Data-driven internal mobility: Similarity regularization gets the job done
Simon De Vos, Johannes Desmedt, Marijke Verbruggen, Wouter Verbeke [2024]
To replicate the results as reported in the paper, exectute the notebook 'main.ipynb'
- Instructions for 'main.ipynb':
- Set the project directory to your custom folder. For example,
DIR = r'C:\Users\folder\subfolder\RecSys_SR'
- Specify experiment configuration in
settings = {'dataset': 3, 'method': 'mfsr', ...}
. The settings as currently specified will replicate the results on dataset 3. Per key, the following options are available:dataset: {3}
, 1 and 2 are not publicly available. Select 0 for a small synthetic dataset for quick runs and debugging.method: {'mf', 'mfsr', 'svd', 'slopeone', 'knnc', 'knnp', 'knnsmd', 'knnta'}
,test_size: [0,1]
,oot: {0,1}
, out-of-time split (no/yes)oitv: {0,1}
, ensures one observation per entity in the training set (no/yes)load_similarity: {False, True}
, If True, load similarity matrix from file, otherwise compute it. Relevant for methods: 'mfsr', 'knnsmd', 'knnta'hyperpara_tune: {False, True}
, If True, tune hyperparameters. If False, load optimal hyperparameters from 'optimal_hyperparameters.yaml'
- Datasets 1 and 2 are not publicly available. Dataset 3 can be found here.
- Hyperparameter grids can be adapted in 'hyperparameter_grid.yaml'
- Set the project directory to your custom folder. For example,
RecSys_SR/
│
├── data/
│ ├── toy_example.csv
│ └── dataset_3.csv
│
├── experiment/
│ ├── experiment.py: defines Experiment class and functions
│ ├── hyperparameter_grid.yaml: defines hyperparameter grid
│ ├── main.ipynb: run this to replicate experiments
│ ├── methods.py: defines methods ('mf', 'mfsr', 'svd', 'slopeone', 'knnc', 'knnp', 'knnsmd', 'knnta')
│ └── utils.py: contains utility functions
│
├── img/
│ ├── Two images on latent representations (Figures 2a and 2b).
│ └── EJM (Figure A.3)
│
└── similarity_matrix/
└── stored_similarity_matrices for methods 'mfsr', 'knnsmd', 'knnta'
Please cite our paper and/or code as follows:
De Vos, S., De Smedt, J., Verbruggen, M., & Verbeke, W. (2024). Data-driven internal mobility: Similarity regularization gets the job done. Knowledge-Based Systems, 111824.