Repository for TPE and TP coding
.INFO4017_22_23_UYI
├── DATA # DATA FILE TASKS IMPLEMENTATION
├── FUNCTIONS # FUNCTION FILE TASKS IMPLEMENTATION
├── INCLUDES # HEADER FILE TASKS IMPLEMENTATION
├── LIBRARIES # USEFULL LIBRARIES
├── LOGS # LOGS DIRECTORY
├── LICENCE # LICENCE DECLARATION OF CODE BASED IMPLEMENTATION
├── README.md # documentation file
├── Makefile # EXECUTION SCRIPTS FOR PRODUCTION
├── *.cpp # TASKS GUI ENTRY POINT
├── setup # EXECUTABLE GUI ENTRY POINT
└── setup.cpp # MAIN GUI ENTRY POINT
-
strassen.cpp
implementation of matrix mult within DPR paradigm -
lcs.cpp
implementation of LCS problem solving with PD paradigm -
setup.cpp
implementation of user gui -
globalSequenceAlignment.cpp
implementation of sequence global alignment within DP paradim
Program: GSA
entries: X, Y string
PD table de programmation dynamique orientée
outputs: _GSA vector of alignment
begin:
a := {(len(X),len(Y))}
_X := {}
_Y := {}
while a != empty do
local_X := {}
local_Y := {}
local_a := {}
for all (i,j) in a do
if exists only one arrows in (i,j) cell then
if match or mismatch then
for all xi in _X do
local_X := local_X U X[i] + xi
endfor
for all yi in _Y do
local_Y := local_Y U Y[j] + yi
endfor
local_a := local_a U (i-1,j-1)
else if vertical gap then
for all xi in _X do
local_X := local_X U '_' + xi
endfor
for all yi in _Y do
local_Y := local_Y U Y[j] + yi
endfor
local_a := local_a U (i,j-1)
else if horizontal gap then
for all xi in _X do
local_X := local_X U X[i] + xi
endfor
for all yi in _Y do
local_Y := local_Y U '_' + yi
endfor
local_a := local_a U (i-1,j)
else
if i == 0 and j > 0 then
for all xi in _X do
local_X := local_X U '_' + xi
endfor
for all yi in _Y do
local_Y := local_Y U Y[j] + yi
endfor
else if j == 0 and i > 0 then
for all xi in _X do
local_X := local_X U X[i] + xi
endfor
for all yi in _Y do
local_Y := local_Y U '_' + yi
endfor
sinon
for all xi in _X do
local_X := local_X U xi
endfor
for all yi in _Y do
local_Y := local_Y U yi
endfor
endif
endif
else
if exists more than one arrows in (i,j) cell then
if match or mismatch then
for all xi in _X do
local_X := local_X U X[i] + xi
endfor
for all yi in _Y do
local_Y := local_Y U Y[j] + yi
endfor
local_a := local_a U (i-1,j-1)
endif
if vertical gap then
for all xi in _X do
local_X := local_X U '_' + xi
endfor
for all yi in _Y do
local_Y := local_Y U Y[j] + yi
endfor
local_a := local_a U (i,j-1)
endif
if horizontal gap then
for all xi in _X do
local_X := local_X U X[i] + xi
endfor
for all yi in _Y do
local_Y := local_Y U '_' + yi
endfor
local_a := local_a U (i-1,j)
endif
endif
endif
endfor
_X := local_X
_Y := local_Y
a := local_a
endwhile
endprog
n*m | word 1 (n) | word 2 (m) | solution | time ms | number of alignments |
---|---|---|---|---|---|
4*4 | here | here | here | 0 | 3 |
10*4 | here | here | here | 0 | 17 |
15*4 | here | here | here | 0 | 18 |
15*10 | here | here | here | 0 | 54 |
20*4 | here | here | here | 0 | 31 |
20*10 | here | here | here | 0 | 45 |
20*15 | here | here | here | 25000 | 3114 |
25*4 | here | here | here | 0 | 4 |
25*10 | here | here | here | 0 | 39 |
25*15 | here | here | here | 1000 | 59 |
25*20 | here | here | here | 26000 | 1691 |
30*4 | here | here | here | 1000 | 33 |
30*10 | here | here | here | 0 | 14 |
30*15 | here | here | here | 1000 | 479 |
30*20 | here | here | here | 0 | 84 |
30*25 | here | here | here | 4000 | 140 |
45*50 | here | here | here | 137000 | 1520 |
-
pgcb.cpp
implementation of the most big white square
fonction PGCB(n)
pour x = 1 à n
pour y = 1 à n
si (x,y) est noir
pgcb[x,y] = 0
sinon si x = 1 ou y = 1
pgcb[x,y] = 1
sinon
pgcb[x,y] = 1 + min{pgcb(x-1,y-1),pgcb(x,y-1),pgcb(x-1,y)}
Programme PGCB
données: A matrice binaire représentant l'image chromatique
n la taille de la matrice binaire
resultats: (_c,_x,_y)
variables: _pgcb un tableau,
_c,_x,_y des d'entier
Debut
// cette version de l'algorithme de pgcb retourne à la fois la taille _c des plus grand carré blanc
// et deux vecteur _x,_y représentation conjointement les différentes position de pixels
// en bas à droit de ses grand carré blanc
// tout d'abord redimensionner _pgcd suivant la taille de l'image prise en paramètre
redim(_pgcb,n);
// initialisons la taille maximal du plus grand carré
_c = -1;
// contruction
pour i de 1 à n faire
pour j de 1 à n faire
_pgcb[i][j] = 0
finpour
finpour
// remplissage du tableau de programmation dynamique
pour i de 1 à n faire
pour j de 1 à n faire
si A[i][j] == 0 alors // où 0 matérialise le blanc dans notre image chromatique
si i == 0 ou j == 0 alors
_pgcb[i][j] = 1
si _c < 1 alors
vider(_x)
vider(_y)
_c = 1
_x.ajouter(i)
_y.ajouter(j)
sinon
si _c == 1 alors
_x.ajouter(i)
_y.ajouter(j)
finsi
finsi
sinon
_pgcb[i][j] = min(_pgcb[i-1][j-1],min(_pgcb[i][j-1],_pgcb[i-1][j]))
si _c < _pgcb[i][j] alors
vider(_x)
vider(_y)
_c = _pgcb[i][j]
_x.ajouter(i)
_y.ajouter(j)
sinon
si _c == _pgcb[i][j] alors
_x.ajouter(i)
_y.ajouter(j)
finsi
finsi
finsi
finsi
finpour
finpour
// retourner la solution
retourner (_c,_x,_y)
fin
-
karatsuba.cpp
implementation of polynom mult within DPR paradigm -
sac_a_dos.cpp
implementation of whole backpack problem within PD paradigm -
tree.cpp
implementation of tree methods such as pre-fixed, post-fixed and in-fixed, deep route, ... -
graph.cpp
implementation of tree methods such as prim, kuuskal, ... -
knn.cpp
implementation of k nearest neighbors method, for k 2,3, ... -
sort.cpp
implementation of sort method, such as fusion sort, bubble sort, ... -
fibonacci.cpp
implementation of fibonacci method -
market_traveling.cpp
implementation of market traveling problem -
sequence_alignment.cpp
implementation of sequence alignment problem in genetic, ...
clone project
- https link
git clone https://github.com/VictorNico/INFO4017_22_23_UYI.git
- ssh link
git clone git@github.com:VictorNico/INFO4017_22_23_UYI.git
- github command
gh repo clone VictorNico/INFO4017_22_23_UYI
change directory of task
cd INFO4017_22_23_UYI/task
usage
- reset
make clean
- compile
make
- execute
without debugging flag
./setup
with debugging flags
./setup -g
Notice
: -g is use to show some methods
progression along the time execution.