Skip to content

A Consumption-Generation Driven Place-Transition Embedding Framework for Predictive Process Monitoring

Notifications You must be signed in to change notification settings

WHU-Process-Mining/PTE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A Consumption-Generation Driven Place-Transition Embedding Framework for Predictive Process Monitoring

Installation

  1. Create a python environment

    conda create -n PTE python=3.8.0
    conda activate PTE 
  2. Install pytorch

    Following the official website's guidance (https://pytorch.org/get-started/locally/), install the corresponding PyTorch version based on your CUDA version. For our experiments, we use torch 1.12.1+cu116. The installation command is as follows:

    pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu116
  3. Install other related dependencies

    pip install -r requirements.txt

Train

First, you need to specify data_path and dataset in configs/PTE_Model.yaml.

Here, Two training methods are provided here:

  1. Specify Hyperparameters: Specify model_parameters in configs/PTE_Model.yaml.
    python train_pte.py
  2. Use Optuna for Hyperparameter Optimization:
    python run_pte.py

Test

```bash
python test_pte.py
```

About

A Consumption-Generation Driven Place-Transition Embedding Framework for Predictive Process Monitoring

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages