-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathJacobian.m
53 lines (35 loc) · 1.63 KB
/
Jacobian.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
function [J, J1, J2, J3, J4, J5, J6, J7] = Jacobian(q, link_lengths)
%% Extracting the link lengths
d0 = link_lengths(1);
d1 = link_lengths(2);
d2 = link_lengths(3);
d3 = link_lengths(4);
d4 = link_lengths(5);
d6 = link_lengths(6);
q0 = q(1);
q1 = q(2);
q2 = q(3);
q3 = q(4);
q4 = q(5);
q5 = q(6);
q6 = q(7);
%% Getting the forward kinematics
T = FK(q, link_lengths);
T(1:3, 4) = 0;
%% Getting the jacobians
Td = Tyd(q0)*Tz(d0)*Rz(q1)*Tx(d1)*Ry(q2)*Tx(d2)*Ry(q3)*Tx(d3)*Tz(d4)*Rx(q4)*Ry(q5)*Rx(q6)*Tx(d6) / T;
J1 = [ Td(1,4); Td(2,4); Td(3,4); Td(3,2); Td(1,3); Td(2,1)];
Td = Ty(q0)*Tz(d0)*Rzd(q1)*Tx(d1)*Ry(q2)*Tx(d2)*Ry(q3)*Tx(d3)*Tz(d4)*Rx(q4)*Ry(q5)*Rx(q6)*Tx(d6) / T;
J2 = [ Td(1,4); Td(2,4); Td(3,4); Td(3,2); Td(1,3); Td(2,1)];
Td = Ty(q0)*Tz(d0)*Rz(q1)*Tx(d1)*Ryd(q2)*Tx(d2)*Ry(q3)*Tx(d3)*Tz(d4)*Rx(q4)*Ry(q5)*Rx(q6)*Tx(d6) / T;
J3 = [ Td(1,4); Td(2,4); Td(3,4); Td(3,2); Td(1,3); Td(2,1)];
Td = Ty(q0)*Tz(d0)*Rz(q1)*Tx(d1)*Ry(q2)*Tx(d2)*Ryd(q3)*Tx(d3)*Tz(d4)*Rx(q4)*Ry(q5)*Rx(q6)*Tx(d6) / T;
J4 = [ Td(1,4); Td(2,4); Td(3,4); Td(3,2); Td(1,3); Td(2,1)];
Td = Ty(q0)*Tz(d0)*Rz(q1)*Tx(d1)*Ry(q2)*Tx(d2)*Ry(q3)*Tx(d3)*Tz(d4)*Rxd(q4)*Ry(q5)*Rx(q6)*Tx(d6) / T;
J5 = [ Td(1,4); Td(2,4); Td(3,4); Td(3,2); Td(1,3); Td(2,1)];
Td = Ty(q0)*Tz(d0)*Rz(q1)*Tx(d1)*Ry(q2)*Tx(d2)*Ry(q3)*Tx(d3)*Tz(d4)*Rx(q4)*Ryd(q5)*Rx(q6)*Tx(d6) / T;
J6 = [ Td(1,4); Td(2,4); Td(3,4); Td(3,2); Td(1,3); Td(2,1)];
Td = Ty(q0)*Tz(d0)*Rz(q1)*Tx(d1)*Ry(q2)*Tx(d2)*Ry(q3)*Tx(d3)*Tz(d4)*Rx(q4)*Ry(q5)*Rxd(q6)*Tx(d6) / T;
J7 = [ Td(1,4); Td(2,4); Td(3,4); Td(3,2); Td(1,3); Td(2,1)];
J = [J1, J2, J3, J4, J5, J6, J7];
end