Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

takagi fix #394

Merged
merged 12 commits into from
Jul 8, 2024
Merged
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions .github/CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,8 @@

### Bug fixes

* Add the calculation method of `takagi` when the matrix is diagonal. [(#394)](https://github.com/XanaduAI/thewalrus/pull/394)

### Documentation

### Contributors
Expand Down
11 changes: 11 additions & 0 deletions thewalrus/decompositions.py
Original file line number Diff line number Diff line change
Expand Up @@ -202,6 +202,17 @@ def takagi(A, svd_order=True):
vals, U = takagi(Amr, svd_order=svd_order)
return vals, U * np.exp(1j * phi / 2)

# If the matrix is diagonal, Takagi decomposition is easy
if np.allclose(A, np.diag(np.diag(A)), rtol=1e-16):
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I'd suggest you move this rtol as an optional parameter in the signature of the function.

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I have moved rtol as an optional parameter of takagi function.

d = np.diag(A)
U = np.diag(np.exp(1j * 0.5 * np.angle(d)))
l = np.abs(d)
l = np.sort(l)
U = U[np.argsort(l)]
if svd_order:
return l[::-1], U[:, ::-1]
return l, U
Comment on lines +216 to +218
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

you can do the same thing on lines 218-220 as well if it helps, but I think this should suffice.

Suggested change
if svd_order:
return l[::-1], U[:, ::-1]
return l, U
return (l[::-1], U[:, ::-1]) if svd_order else (l, U)


u, d, v = np.linalg.svd(A)
U = u @ sqrtm((v @ np.conjugate(u)).T)
if svd_order is False:
Expand Down
56 changes: 50 additions & 6 deletions thewalrus/tests/test_decompositions.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,13 @@

from thewalrus.random import random_interferometer as haar_measure
from thewalrus.random import random_symplectic
from thewalrus.decompositions import williamson, blochmessiah, takagi, pre_iwasawa, iwasawa
from thewalrus.decompositions import (
williamson,
blochmessiah,
takagi,
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

did you do black -l 100 file.py it seems to me like this changes should not happen.

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I did black file.py. Should I do black -l 100 file.py instead?

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yup, that is the standard use in here.

pre_iwasawa,
iwasawa,
)
from thewalrus.symplectic import sympmat as omega
from thewalrus.quantum.gaussian_checks import is_symplectic

Expand Down Expand Up @@ -48,15 +54,19 @@ def _create_cov(nbar):

# interferometer 1
U1 = haar_measure(n)
S1 = np.vstack([np.hstack([U1.real, -U1.imag]), np.hstack([U1.imag, U1.real])])
S1 = np.vstack(
[np.hstack([U1.real, -U1.imag]), np.hstack([U1.imag, U1.real])]
)

# squeezing
r = np.log(0.2 * np.arange(n) + 2)
Sq = block_diag(np.diag(np.exp(-r)), np.diag(np.exp(r)))

# interferometer 2
U2 = haar_measure(n)
S2 = np.vstack([np.hstack([U2.real, -U2.imag]), np.hstack([U2.imag, U2.real])])
S2 = np.vstack(
[np.hstack([U2.real, -U2.imag]), np.hstack([U2.imag, U2.real])]
)

# final symplectic
S_final = S2 @ Sq @ S1
Expand Down Expand Up @@ -99,7 +109,9 @@ def test_even_validation(self):
"""Test that the graph_embed decomposition raises exception if not even number of rows"""
A = np.random.rand(5, 5) + 1j * np.random.rand(5, 5)
A += A.T
with pytest.raises(ValueError, match="must have an even number of rows/columns"):
with pytest.raises(
ValueError, match="must have an even number of rows/columns"
):
williamson(A)

def test_positive_definite_validation(self):
Expand Down Expand Up @@ -172,7 +184,9 @@ def _create_transform(n, passive=True):

# interferometer 1
U1 = haar_measure(n)
S1 = np.vstack([np.hstack([U1.real, -U1.imag]), np.hstack([U1.imag, U1.real])])
S1 = np.vstack(
[np.hstack([U1.real, -U1.imag]), np.hstack([U1.imag, U1.real])]
)

Sq = np.identity(2 * n)
if not passive:
Expand All @@ -182,7 +196,9 @@ def _create_transform(n, passive=True):

# interferometer 2
U2 = haar_measure(n)
S2 = np.vstack([np.hstack([U2.real, -U2.imag]), np.hstack([U2.imag, U2.real])])
S2 = np.vstack(
[np.hstack([U2.real, -U2.imag]), np.hstack([U2.imag, U2.real])]
)

# final symplectic
S_final = S2 @ Sq @ S1
Expand Down Expand Up @@ -324,6 +340,34 @@ def test_takagi_error():
takagi(A)


def test_takagi_diagonal_matrix():
"""Test the takagi decomposition works well for a specific matrix that was not decomposed accurately in a previous implementation.
See more info in PR #393 (https://github.com/XanaduAI/thewalrus/pull/393)"""
A = np.array(
[
[
-8.4509484628125742e-01 + 1.0349426984742664e-16j,
6.3637197288239186e-17 - 7.4398922703555097e-33j,
2.6734481396039929e-32 + 1.7155650257063576e-35j,
],
[
6.3637197288239186e-17 - 7.4398922703555097e-33j,
-2.0594021562561332e-01 + 2.2863956908382538e-17j,
-5.8325863096557049e-17 + 1.6949718400585382e-18j,
],
[
2.6734481396039929e-32 + 1.7155650257063576e-35j,
-5.8325863096557049e-17 + 1.6949718400585382e-18j,
4.4171453199503476e-02 + 1.0022350742842835e-02j,
],
]
)
d, U = takagi(A)
assert np.allclose(A, U @ np.diag(d) @ U.T)
assert np.allclose(U @ np.conjugate(U).T, np.eye(len(U)))
assert np.all(d >= 0)


def test_real_degenerate():
"""Verify that the Takagi decomposition returns a matrix that is unitary and results in a
correct decomposition when input a real but highly degenerate matrix. This test uses the
Expand Down
Loading