-
Notifications
You must be signed in to change notification settings - Fork 197
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
177 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,127 @@ | ||
from dependencies import this | ||
from dependencies import value | ||
import torch | ||
|
||
from brevitas.core.quant.int import RescalingIntQuant | ||
from brevitas.core.restrict_val import QuantRestrictValue | ||
from brevitas.core.stats.stats_wrapper import SCALAR_SHAPE | ||
from brevitas.inject.enum import ScalingPerOutputType | ||
import brevitas.nn as qnn | ||
from brevitas.proxy.groupwise_int_parameter_quant import GroupwiseWeightQuantProxyFromInjector | ||
from brevitas.quant.scaled_int import Int8WeightPerTensorFloat | ||
from brevitas.quant.shifted_scaled_int import ShiftedUint8WeightPerTensorFloat | ||
|
||
|
||
class QuantScalingInt(Int8WeightPerTensorFloat): | ||
bit_width = 8 | ||
module = (this << 1).module | ||
tracked_parameter_list = (this << 1).tracked_parameter_list | ||
upstream_scaling = (this << 1).scaling_per_output_type | ||
rescaling_int_quant = RescalingIntQuant | ||
|
||
@value | ||
def scaling_shape( | ||
scaling_per_output, | ||
scaling_per_output_channel_shape, | ||
expanded_groupwise_shape, | ||
group_dim, | ||
upstream_scaling): | ||
if scaling_per_output == ScalingPerOutputType.TENSOR: | ||
scaling = SCALAR_SHAPE | ||
elif scaling_per_output == ScalingPerOutputType.CHANNEL: | ||
scaling = scaling_per_output_channel_shape | ||
elif scaling_per_output == ScalingPerOutputType.GROUP: | ||
# Scaling shape is like expanded_groupwise_shape but has 1 in position group_dim + 1 | ||
assert expanded_groupwise_shape is not None, "Per Group scaling not correctly configured" | ||
assert group_dim is not None, "Per Group scaling not correctly configured" | ||
size = list(expanded_groupwise_shape) | ||
size[group_dim + 1] = 1 | ||
scaling = tuple(size) | ||
|
||
# When quantizing scale of groupwise, there will be one extra dim compared to the normal case | ||
if upstream_scaling == ScalingPerOutputType.GROUP: | ||
scaling = list(scaling) | ||
scaling.insert(-1, 1) | ||
scaling = tuple(scaling) | ||
return scaling | ||
|
||
|
||
from brevitas.core.zero_point import _ScaleShiftQuantZeroPoint | ||
|
||
|
||
class QuantZPInt(Int8WeightPerTensorFloat): | ||
bit_width = 8 | ||
module = (this << 1).module | ||
tracked_parameter_list = (this << 1).tracked_parameter_list | ||
upstream_scaling = (this << 1).scaling_per_output_type | ||
rescaling_int_quant = RescalingIntQuant | ||
bit_width = 6 | ||
quantize_zero_point = True | ||
scaling_per_output_type = ScalingPerOutputType.CHANNEL | ||
|
||
@value | ||
def scaling_shape( | ||
scaling_per_output, | ||
scaling_per_output_channel_shape, | ||
expanded_groupwise_shape, | ||
group_dim, | ||
upstream_scaling): | ||
if scaling_per_output == ScalingPerOutputType.TENSOR: | ||
scaling = SCALAR_SHAPE | ||
elif scaling_per_output == ScalingPerOutputType.CHANNEL: | ||
scaling = scaling_per_output_channel_shape | ||
elif scaling_per_output == ScalingPerOutputType.GROUP: | ||
# Scaling shape is like expanded_groupwise_shape but has 1 in position group_dim + 1 | ||
assert expanded_groupwise_shape is not None, "Per Group scaling not correctly configured" | ||
assert group_dim is not None, "Per Group scaling not correctly configured" | ||
size = list(expanded_groupwise_shape) | ||
size[group_dim + 1] = 1 | ||
scaling = tuple(size) | ||
|
||
# When quantizing scale of groupwise, there will be one extra dim compared to the normal case | ||
if upstream_scaling == ScalingPerOutputType.GROUP: | ||
scaling = list(scaling) | ||
scaling.insert(-1, 1) | ||
scaling = tuple(scaling) | ||
return scaling | ||
|
||
|
||
class QuantScaleInt8WeightPerTensorFloat(ShiftedUint8WeightPerTensorFloat): | ||
proxy_class = GroupwiseWeightQuantProxyFromInjector | ||
scaling_int_quant = QuantScalingInt | ||
zp_int = QuantZPInt | ||
restrict_scaling_impl = QuantRestrictValue | ||
scaling_per_output_type = ScalingPerOutputType.GROUP | ||
scale_shit_zero_point_impl = _ScaleShiftQuantZeroPoint | ||
group_size = 32 | ||
|
||
@value | ||
def restrict_value_float_to_int_impl(): | ||
return this.scaling_int_quant.rescaling_int_quant | ||
|
||
@value | ||
def zp_int_quant(): | ||
return this.zp_int.rescaling_int_quant | ||
|
||
|
||
def test_quant_scale(): | ||
|
||
def hook_scale(module, inp): | ||
inp = inp[0] | ||
quant_scale, scale, *_ = module.float_to_int_impl(inp) | ||
assert torch.allclose(quant_scale / scale, torch.round(quant_scale / scale)) | ||
|
||
def hook_zp(module, inp): | ||
inp = inp[0] | ||
quant_scale, scale, *_ = module.zp_int_quant(inp) | ||
assert torch.allclose(quant_scale / scale, torch.round(quant_scale / scale)) | ||
|
||
linear = qnn.QuantLinear(64, 768, weight_quant=QuantScaleInt8WeightPerTensorFloat) | ||
for module in linear.modules(): | ||
if isinstance(module, QuantRestrictValue): | ||
module.register_forward_pre_hook(hook_scale) | ||
for module in linear.modules(): | ||
if isinstance(module, _ScaleShiftQuantZeroPoint): | ||
module.register_forward_pre_hook(hook_zp) | ||
|
||
linear(torch.randn(1, 64)) |