Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feat (graph/equalize): upcast during equalization computation #970

Merged
merged 2 commits into from
Jun 21, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34 changes: 21 additions & 13 deletions src/brevitas/graph/equalize.py
Original file line number Diff line number Diff line change
Expand Up @@ -474,9 +474,11 @@ def _no_equalize():
return _no_equalize()

scale_fn = _select_scale_computation_fn(scale_computation_type)
sink_weights = {name: transpose(m.weight.cpu(), axis) for name, (m, axis) in sink_axes.items()}
srcs_range = -1 * torch.ones(max_shape_srcs, device='cpu', dtype=dtype)
sinks_range = -1 * torch.ones(max_shape_sinks, device='cpu', dtype=dtype)
sink_weights = {
name: transpose(m.weight.cpu().to(torch.float32), axis)
for name, (m, axis) in sink_axes.items()}
srcs_range = -1 * torch.ones(max_shape_srcs, device='cpu', dtype=torch.float32)
sinks_range = -1 * torch.ones(max_shape_sinks, device='cpu', dtype=torch.float32)
for k, v in sink_weights.items():
# Sinks can be partially equalized, thus we need to select
# only the channels we are interested in
Expand All @@ -493,11 +495,13 @@ def _no_equalize():
# weight equalization
if merge_bias:
src_weights = {
name: _combine_weights_bias(transpose(m.weight, axis), bias_shrinkage, m.bias).cpu()
name: _combine_weights_bias(transpose(m.weight, axis), bias_shrinkage,
m.bias).cpu().to(torch.float32)
for name, (m, axis) in src_axes.items()}
else:
src_weights = {
name: transpose(m.weight.cpu(), axis) for name, (m, axis) in src_axes.items()}
name: transpose(m.weight.cpu().to(torch.float32), axis)
for name, (m, axis) in src_axes.items()}
for k, v in src_weights.items():
# Srcs are always fully equalized, thus we simply need to apply the offset to position them
# correctly with respect to the other srcs matrices.
Expand All @@ -516,8 +520,10 @@ def _no_equalize():
list_of_act_val = list_of_act_val = [
transpose(act_val, act_axis) for act_val in list_of_act_val]
srcs_range_act = scale_fn(
torch.cat([act_val.reshape(act_val.size(0), -1) for act_val in list_of_act_val],
1)).cpu()
torch.cat([
act_val.reshape(act_val.size(0), -1).cpu().to(torch.float32)
for act_val in list_of_act_val],
1))

if list_of_act_val is not None:
if co_optimize_act_weights and len(src_axes) > 0:
Expand All @@ -536,9 +542,9 @@ def _no_equalize():
# which is the no-op equivalent for equalization.
channelwise_no_equalize = (sinks_range <= EPSILON) | (srcs_range <= EPSILON)
sinks_range = torch.where(
channelwise_no_equalize, torch.tensor(1., dtype=dtype, device='cpu'), sinks_range)
channelwise_no_equalize, torch.tensor(1., dtype=torch.float32, device='cpu'), sinks_range)
srcs_range = torch.where(
channelwise_no_equalize, torch.tensor(1., dtype=dtype, device='cpu'), srcs_range)
channelwise_no_equalize, torch.tensor(1., dtype=torch.float32, device='cpu'), srcs_range)

srcs_range = torch.pow(srcs_range, alpha)
sinks_range = torch.pow(sinks_range, 1 - alpha)
Expand All @@ -548,15 +554,16 @@ def _no_equalize():
if list_of_act_val is not None and list_of_insert_mul_node_fn is not None:
device = list_of_act_val[0].device
for act_val_shape, insert_mul_node_fn in zip(list_of_act_val_shapes, list_of_insert_mul_node_fn):
insert_mul_node_fn(inverse_scaling_factors.to(device=device), act_val_shape, act_axis)
insert_mul_node_fn(
inverse_scaling_factors.to(device=device, dtype=dtype), act_val_shape, act_axis)
if len(src_axes) > 0:
for name, (module, axis) in src_axes.items():
module_device = module.weight.device
indexes = region.srcs[name]
channel_start = indexes.offset + indexes.start
channel_end = indexes.offset + indexes.end
partial_inverse_scale = inverse_scaling_factors[channel_start:channel_end].to(
device=module_device)
device=module_device, dtype=dtype)
if hasattr(module, 'bias') and module.bias is not None:
_update_weights(
module, module.bias * partial_inverse_scale.view_as(module.bias), attr='bias')
Expand All @@ -578,7 +585,7 @@ def _no_equalize():
# one (i.e., no equalization)
partial_scaling[indexes.start:indexes.end] = scaling_factors[indexes.offset:indexes.offset +
channel_range]
partial_scaling = partial_scaling.to(device=module_device)
partial_scaling = partial_scaling.to(device=module_device, dtype=dtype)
_update_weights(
module,
module.weight * torch.reshape(partial_scaling, sink_broadcast_size),
Expand Down Expand Up @@ -983,7 +990,8 @@ def forward_stats_hook(self, module, *args, name, batch_dim=0, use_inp=True, **k

self.batch_dim_act_map[name] = batch_dim

input_scales = self.scale_fn(x, dim=batch_dim)
dtype = x.dtype
input_scales = self.scale_fn(x.to(torch.float32), dim=batch_dim).to(dtype)
if name not in self.float_act_map:
self.float_act_map[name] = input_scales
else:
Expand Down
Loading