Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feat (minifloat): support for FNUZ variants #973

Merged
merged 1 commit into from
Jun 18, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 13 additions & 6 deletions src/brevitas/export/common/handler/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -124,13 +124,20 @@ def validate_neg_scalar_int_exponent(cls, scale: Tensor):
class FloatZeroPointHandlerMixin(ABC):

@classmethod
def zero_point_with_dtype(cls, exponent_bit_width, mantissa_bit_width, zero_point):
if exponent_bit_width == 4 and mantissa_bit_width == 3:
return zero_point.type(torch.float8_e4m3fn)
elif exponent_bit_width == 5 and mantissa_bit_width == 2:
return zero_point.type(torch.float8_e5m2)
def zero_point_with_dtype(
cls, exponent_bit_width, mantissa_bit_width, is_ocp, is_fnuz, zero_point):
if is_ocp:
if exponent_bit_width == 4 and mantissa_bit_width == 3:
return zero_point.type(torch.float8_e4m3fn)
elif exponent_bit_width == 5 and mantissa_bit_width == 2:
return zero_point.type(torch.float8_e5m2)
elif is_fnuz:
if exponent_bit_width == 4 and mantissa_bit_width == 3:
return zero_point.type(torch.float8_e4m3fnuz)
elif exponent_bit_width == 5 and mantissa_bit_width == 2:
return zero_point.type(torch.float8_e5m2fnuz)
else:
return zero_point.type(torch.float32)
raise NotImplementedError


class ZeroPointHandlerMixin(ABC):
Expand Down
53 changes: 35 additions & 18 deletions src/brevitas/export/common/handler/qcdq.py
Original file line number Diff line number Diff line change
Expand Up @@ -78,15 +78,21 @@ def quantize_fn(self, x, scale, zero_point, dtype, axis):
pass

@classmethod
def signed_dtype(cls, exponent_bit_width, mantissa_bit_width):
def signed_dtype(cls, exponent_bit_width, mantissa_bit_width, is_ocp, is_fnuz):
if exponent_bit_width is None or mantissa_bit_width is None:
return None
if exponent_bit_width == 4 and mantissa_bit_width == 3:
dtype = torch.float8_e4m3fn
elif exponent_bit_width == 5 and mantissa_bit_width == 2:
dtype = torch.float8_e5m2
if is_ocp:
if exponent_bit_width == 4 and mantissa_bit_width == 3:
dtype = torch.float8_e4m3fn
elif exponent_bit_width == 5 and mantissa_bit_width == 2:
dtype = torch.float8_e5m2
elif is_fnuz:
if exponent_bit_width == 4 and mantissa_bit_width == 3:
dtype = torch.float8_e4m3fnuz
elif exponent_bit_width == 5 and mantissa_bit_width == 2:
dtype = torch.float8_e5m2fnuz
else:
dtype = torch.float32
raise NotImplementedError
return dtype


Expand Down Expand Up @@ -140,7 +146,8 @@ class FloatCDQCastProxyHandlerMixin(QuantAxisMixin,
CDQCastMixin,
ABC):

def dequantize_symbolic_kwargs(cls, scale, zero_point, exponent_bit_width, mantissa_bit_width):
def dequantize_symbolic_kwargs(
cls, scale, zero_point, exponent_bit_width, mantissa_bit_width, is_ocp, is_fnuz):
scale_orig_shape = scale.shape
axis = cls.quant_axis(scale)
if cls.flatten_dequantize_params:
Expand All @@ -150,7 +157,7 @@ def dequantize_symbolic_kwargs(cls, scale, zero_point, exponent_bit_width, manti
zero_point = zero_point.flatten()
zp = to_0dim_if_scalar(zero_point)
zp = zp.expand_as(scale)
zp = cls.zero_point_with_dtype(exponent_bit_width, mantissa_bit_width, zp)
zp = cls.zero_point_with_dtype(exponent_bit_width, mantissa_bit_width, is_ocp, is_fnuz, zp)
return {
'scale': scale,
'zero_point': zp,
Expand Down Expand Up @@ -187,18 +194,19 @@ def dequantize_symbolic_kwargs(cls, scale, zero_point, bit_width, is_signed):
class FloatQCDQCastWeightQuantProxyHandlerMixin(FloatQMixin, FloatCDQCastProxyHandlerMixin):
handled_layer = WeightFloatQuantProxyFromInjector

def quantize_symbolic_kwargs(cls, scale, zero_point, exponent_bit_width, mantissa_bit_width):
def quantize_symbolic_kwargs(
cls, scale, zero_point, exponent_bit_width, mantissa_bit_width, is_ocp, is_fnuz):
# compute axis before redefining scale
axis = cls.quant_axis(scale)
scale = to_0dim_if_scalar(scale.flatten())
zp = to_0dim_if_scalar(zero_point.flatten())
# expand_as must go after 0-dim check
zp = zp.expand_as(scale)
zp = cls.zero_point_with_dtype(exponent_bit_width, mantissa_bit_width, zp)
zp = cls.zero_point_with_dtype(exponent_bit_width, mantissa_bit_width, is_ocp, is_fnuz, zp)
if cls.itemize_quantize_scalar_params:
scale = to_item_if_0dim(scale)
zp = to_item_if_0dim(zp)
dtype = cls.signed_dtype(exponent_bit_width, mantissa_bit_width)
dtype = cls.signed_dtype(exponent_bit_width, mantissa_bit_width, is_ocp, is_fnuz)
return {'scale': scale, 'zero_point': zp, 'dtype': dtype, 'axis': axis}

def prepare_quantize_from_floating_point(self, module):
Expand All @@ -211,7 +219,9 @@ def prepare_quantize_from_floating_point(self, module):
scale,
quant_weight.zero_point,
quant_weight.exponent_bit_width,
quant_weight.mantissa_bit_width)
quant_weight.mantissa_bit_width,
module.is_ocp,
module.is_fnuz)

def prepare_quantize_from_minifloat(self, module):
raise NotImplementedError
Expand Down Expand Up @@ -249,7 +259,9 @@ def prepare_for_export(self, module):
scale,
quant_weight.zero_point,
quant_weight.exponent_bit_width,
quant_weight.mantissa_bit_width)
quant_weight.mantissa_bit_width,
module.is_ocp,
module.is_fnuz)
else:
self.symbolic_kwargs = None

Expand Down Expand Up @@ -421,18 +433,19 @@ def symbolic_execution(self, x: Tensor, input_bit_width: torch.Tensor, input_is_
class FloatQCDQCastActQuantProxyHandlerMixin(FloatQMixin, FloatCDQCastProxyHandlerMixin, ABC):
handled_layer = ActFloatQuantProxyFromInjector

def quantize_symbolic_kwargs(cls, scale, zero_point, exponent_bit_width, mantissa_bit_width):
def quantize_symbolic_kwargs(
cls, scale, zero_point, exponent_bit_width, mantissa_bit_width, is_ocp, is_fnuz):
# compute axis before redefining scale
axis = cls.quant_axis(scale)
scale = to_0dim_if_scalar(scale.flatten())
zp = to_0dim_if_scalar(zero_point.flatten())
# expand_as must go after 0-dim check
zp = zp.expand_as(scale)
zp = cls.zero_point_with_dtype(exponent_bit_width, mantissa_bit_width, zp)
zp = cls.zero_point_with_dtype(exponent_bit_width, mantissa_bit_width, is_ocp, is_fnuz, zp)
if cls.itemize_quantize_scalar_params:
scale = to_item_if_0dim(scale)
zp = to_item_if_0dim(zp)
dtype = cls.signed_dtype(exponent_bit_width, mantissa_bit_width)
dtype = cls.signed_dtype(exponent_bit_width, mantissa_bit_width, is_ocp, is_fnuz)
return {'scale': scale, 'zero_point': zp, 'dtype': dtype, 'axis': axis}

def prepare_for_export(self, module):
Expand All @@ -457,12 +470,16 @@ def prepare_for_export(self, module):
scale,
module.zero_point(),
module.exponent_bit_width(),
module.mantissa_bit_width())
module.mantissa_bit_width(),
module.is_ocp,
module.is_fnuz)
self.symbolic_kwargs['dequantize_symbolic_kwargs'] = self.dequantize_symbolic_kwargs(
scale,
module.zero_point(),
module.exponent_bit_width(),
module.mantissa_bit_width())
module.mantissa_bit_width(),
module.is_ocp,
module.is_fnuz)
self.symbolic_kwargs['clip_symbolic_kwargs'] = self.clip_symbolic_kwargs(
module.is_narrow_range,
module.is_signed,
Expand Down
14 changes: 1 addition & 13 deletions src/brevitas/export/onnx/standard/qcdq/handler.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,20 +53,8 @@ def validate(self, module):

class StdFloatDQCastONNXMixin(StdDQCastONNXMixin, ABC):

def is_ocp(self, module):
is_e4m3 = module.mantissa_bit_width() == 3 and module.exponent_bit_width() == 4

is_ocp_e4m3 = is_e4m3 and module.inf_values() is None and module.nan_values() == (('111',))

is_e5m2 = module.mantissa_bit_width() == 5 and module.exponent_bit_width() == 2

is_ocp_e5m2 = is_e5m2 and module.inf_values() == (
('00',)) and module.nan_values() == ('01', '11', '10')

return is_ocp_e4m3 or is_ocp_e5m2

def validate(self, module):
assert self.is_ocp(module), 'Only OCP Standard is supported for FP8 export'
assert module.is_ocp or module.is_fnuz, 'Only OCP/FNUZ Standard are supported for FP8 export'


class StdFloatCDQCastONNXMixin(CDQCastMixin, StdFloatDQCastONNXMixin, ABC):
Expand Down
22 changes: 22 additions & 0 deletions src/brevitas/proxy/float_parameter_quant.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,6 +62,28 @@ def nan_values(self):
nan_values = self.__call__(self.tracked_parameter_list[0]).nan_values
return nan_values

@property
def is_ocp(self):
is_e4m3 = self.mantissa_bit_width() == 3 and self.exponent_bit_width() == 4
is_ocp_e4m3 = is_e4m3 and self.inf_values() is None and self.nan_values() == (('111',))

is_e5m2 = self.mantissa_bit_width() == 5 and self.exponent_bit_width() == 2
is_ocp_e5m2 = is_e5m2 and self.inf_values() == (
('00',)) and self.nan_values() == ('01', '11', '10')

return is_ocp_e4m3 or is_ocp_e5m2

@property
def is_fnuz(self):
is_e4m3 = self.mantissa_bit_width() == 3 and self.exponent_bit_width() == 4
is_fnuz_e4m3 = is_e4m3 and self.inf_values() is None and self.nan_values(
) is None and self.exponent_bias() == 8

is_e5m2 = self.mantissa_bit_width() == 5 and self.exponent_bit_width() == 2
is_fnuz_e5m2 = is_e5m2 and self.inf_values() is None and self.nan_values(
) is None and self.exponent_bias() == 16
return is_fnuz_e4m3 or is_fnuz_e5m2

def forward(self, x: torch.Tensor) -> Union[Tensor, FloatQuantTensor]:
if self.is_quant_enabled:
impl = self.export_handler if self.export_mode else self.tensor_quant
Expand Down
22 changes: 22 additions & 0 deletions src/brevitas/proxy/float_runtime_quant.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,28 @@ def inf_values(self, force_eval=True):
def nan_values(self, force_eval=True):
return self.retrieve_attribute('nan_values', force_eval)

@property
def is_ocp(self):
is_e4m3 = self.mantissa_bit_width() == 3 and self.exponent_bit_width() == 4
is_ocp_e4m3 = is_e4m3 and self.inf_values() is None and self.nan_values() == (('111',))

is_e5m2 = self.mantissa_bit_width() == 5 and self.exponent_bit_width() == 2
is_ocp_e5m2 = is_e5m2 and self.inf_values() == (
('00',)) and self.nan_values() == ('01', '11', '10')

return is_ocp_e4m3 or is_ocp_e5m2

@property
def is_fnuz(self):
is_e4m3 = self.mantissa_bit_width() == 3 and self.exponent_bit_width() == 4
is_fnuz_e4m3 = is_e4m3 and self.inf_values() is None and self.nan_values(
) is None and self.exponent_bias() == 8

is_e5m2 = self.mantissa_bit_width() == 5 and self.exponent_bit_width() == 2
is_fnuz_e5m2 = is_e5m2 and self.inf_values() is None and self.nan_values(
) is None and self.exponent_bias() == 16
return is_fnuz_e4m3 or is_fnuz_e5m2

def forward(self, x: Union[Tensor, FloatQuantTensor]) -> Union[Tensor, FloatQuantTensor]:
out = x
if self.fused_activation_quant_proxy is not None:
Expand Down
Loading
Loading