-
Notifications
You must be signed in to change notification settings - Fork 79
/
Copy pathnet.py
199 lines (172 loc) · 10.1 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import torch.nn
from torch.nn.functional import relu
from config import *
import articulate as art
class RNN(torch.nn.Module):
r"""
An RNN Module including a linear input layer, an RNN, and a linear output layer.
"""
def __init__(self, n_input, n_output, n_hidden, n_rnn_layer=2, bidirectional=True, dropout=0.2):
super(RNN, self).__init__()
self.rnn = torch.nn.LSTM(n_hidden, n_hidden, n_rnn_layer, bidirectional=bidirectional)
self.linear1 = torch.nn.Linear(n_input, n_hidden)
self.linear2 = torch.nn.Linear(n_hidden * (2 if bidirectional else 1), n_output)
self.dropout = torch.nn.Dropout(dropout)
def forward(self, x, h=None):
x, h = self.rnn(relu(self.linear1(self.dropout(x))).unsqueeze(1), h)
return self.linear2(x.squeeze(1)), h
class TransPoseNet(torch.nn.Module):
r"""
Whole pipeline for pose and translation estimation.
"""
def __init__(self, num_past_frame=20, num_future_frame=5, hip_length=None, upper_leg_length=None,
lower_leg_length=None, prob_threshold=(0.5, 0.9), gravity_velocity=-0.018):
r"""
:param num_past_frame: Number of past frames for a biRNN window.
:param num_future_frame: Number of future frames for a biRNN window.
:param hip_length: Hip length in meters. SMPL mean length is used by default. Float or tuple of 2.
:param upper_leg_length: Upper leg length in meters. SMPL mean length is used by default. Float or tuple of 2.
:param lower_leg_length: Lower leg length in meters. SMPL mean length is used by default. Float or tuple of 2.
:param prob_threshold: The probability threshold used to control the fusion of the two translation branches.
:param gravity_velocity: The gravity velocity added to the Trans-B1 when the body is not on the ground.
"""
super().__init__()
n_imu = 6 * 3 + 6 * 9 # acceleration (vector3) and rotation matrix (matrix3x3) of 6 IMUs
self.pose_s1 = RNN(n_imu, joint_set.n_leaf * 3, 256)
self.pose_s2 = RNN(joint_set.n_leaf * 3 + n_imu, joint_set.n_full * 3, 64)
self.pose_s3 = RNN(joint_set.n_full * 3 + n_imu, joint_set.n_reduced * 6, 128)
self.tran_b1 = RNN(joint_set.n_leaf * 3 + n_imu, 2, 64)
self.tran_b2 = RNN(joint_set.n_full * 3 + n_imu, 3, 256, bidirectional=False)
# lower body joint
m = art.ParametricModel(paths.smpl_file)
j, _ = m.get_zero_pose_joint_and_vertex()
b = art.math.joint_position_to_bone_vector(j[joint_set.lower_body].unsqueeze(0),
joint_set.lower_body_parent).squeeze(0)
bone_orientation, bone_length = art.math.normalize_tensor(b, return_norm=True)
if hip_length is not None:
bone_length[1:3] = torch.tensor(hip_length)
if upper_leg_length is not None:
bone_length[3:5] = torch.tensor(upper_leg_length)
if lower_leg_length is not None:
bone_length[5:7] = torch.tensor(lower_leg_length)
b = bone_orientation * bone_length
b[:3] = 0
# constant
self.global_to_local_pose = m.inverse_kinematics_R
self.lower_body_bone = b
self.num_past_frame = num_past_frame
self.num_future_frame = num_future_frame
self.num_total_frame = num_past_frame + num_future_frame + 1
self.prob_threshold = prob_threshold
self.gravity_velocity = torch.tensor([0, gravity_velocity, 0])
self.feet_pos = j[10:12].clone()
self.floor_y = j[10:12, 1].min().item()
# variable
self.rnn_state = None
self.imu = None
self.current_root_y = 0
self.last_lfoot_pos, self.last_rfoot_pos = self.feet_pos
self.last_root_pos = torch.zeros(3)
self.reset()
self.load_state_dict(torch.load(paths.weights_file))
self.eval()
def _reduced_glb_6d_to_full_local_mat(self, root_rotation, glb_reduced_pose):
glb_reduced_pose = art.math.r6d_to_rotation_matrix(glb_reduced_pose).view(-1, joint_set.n_reduced, 3, 3)
global_full_pose = torch.eye(3, device=glb_reduced_pose.device).repeat(glb_reduced_pose.shape[0], 24, 1, 1)
global_full_pose[:, joint_set.reduced] = glb_reduced_pose
pose = self.global_to_local_pose(global_full_pose).view(-1, 24, 3, 3)
pose[:, joint_set.ignored] = torch.eye(3, device=pose.device)
pose[:, 0] = root_rotation.view(-1, 3, 3)
return pose
def _prob_to_weight(self, p):
return (p.clamp(self.prob_threshold[0], self.prob_threshold[1]) - self.prob_threshold[0]) / \
(self.prob_threshold[1] - self.prob_threshold[0])
def reset(self):
r"""
Reset online forward states.
"""
self.rnn_state = None
self.imu = None
self.current_root_y = 0
self.last_lfoot_pos, self.last_rfoot_pos = self.feet_pos
self.last_root_pos = torch.zeros(3)
def forward(self, imu, rnn_state=None):
leaf_joint_position = self.pose_s1.forward(imu)[0]
full_joint_position = self.pose_s2.forward(torch.cat((leaf_joint_position, imu), dim=1))[0]
global_reduced_pose = self.pose_s3.forward(torch.cat((full_joint_position, imu), dim=1))[0]
contact_probability = self.tran_b1.forward(torch.cat((leaf_joint_position, imu), dim=1))[0]
velocity, rnn_state = self.tran_b2.forward(torch.cat((full_joint_position, imu), dim=1), rnn_state)
return leaf_joint_position, full_joint_position, global_reduced_pose, contact_probability, velocity, rnn_state
@torch.no_grad()
def forward_offline(self, imu):
r"""
Offline forward.
:param imu: Tensor in shape [num_frame, input_dim(6 * 3 + 6 * 9)].
:return: Pose tensor in shape [num_frame, 24, 3, 3] and translation tensor in shape [num_frame, 3].
"""
_, _, global_reduced_pose, contact_probability, velocity, _ = self.forward(imu)
# calculate pose (local joint rotation matrices)
root_rotation = imu[:, -9:].view(-1, 3, 3)
pose = self._reduced_glb_6d_to_full_local_mat(root_rotation.cpu(), global_reduced_pose.cpu())
# calculate velocity (translation between two adjacent frames in 60fps in world space)
j = art.math.forward_kinematics(pose[:, joint_set.lower_body],
self.lower_body_bone.expand(pose.shape[0], -1, -1),
joint_set.lower_body_parent)[1]
tran_b1_vel = self.gravity_velocity + art.math.lerp(
torch.cat((torch.zeros(1, 3, device=j.device), j[:-1, 7] - j[1:, 7])),
torch.cat((torch.zeros(1, 3, device=j.device), j[:-1, 8] - j[1:, 8])),
contact_probability.max(dim=1).indices.view(-1, 1).cpu()
)
tran_b2_vel = root_rotation.bmm(velocity.unsqueeze(-1)).squeeze(-1).cpu() * vel_scale / 60 # to world space
weight = self._prob_to_weight(contact_probability.cpu().max(dim=1).values.sigmoid()).view(-1, 1)
velocity = art.math.lerp(tran_b2_vel, tran_b1_vel, weight)
# remove penetration
current_root_y = 0
for i in range(velocity.shape[0]):
current_foot_y = current_root_y + j[i, 7:9, 1].min().item()
if current_foot_y + velocity[i, 1].item() <= self.floor_y:
velocity[i, 1] = self.floor_y - current_foot_y
current_root_y += velocity[i, 1].item()
return pose, self.velocity_to_root_position(velocity)
@torch.no_grad()
def forward_online(self, x):
r"""
Online forward.
:param x: A tensor in shape [input_dim(6 * 3 + 6 * 9)].
:return: Pose tensor in shape [24, 3, 3] and translation tensor in shape [3].
"""
imu = x.repeat(self.num_total_frame, 1) if self.imu is None else torch.cat((self.imu[1:], x.view(1, -1)))
_, _, global_reduced_pose, contact_probability, velocity, self.rnn_state = self.forward(imu, self.rnn_state)
contact_probability = contact_probability[self.num_past_frame].sigmoid().view(-1).cpu()
# calculate pose (local joint rotation matrices)
root_rotation = imu[self.num_past_frame, -9:].view(3, 3).cpu()
global_reduced_pose = global_reduced_pose[self.num_past_frame].cpu()
pose = self._reduced_glb_6d_to_full_local_mat(root_rotation, global_reduced_pose).squeeze(0)
# calculate velocity (translation between two adjacent frames in 60fps in world space)
lfoot_pos, rfoot_pos = art.math.forward_kinematics(pose[joint_set.lower_body].unsqueeze(0),
self.lower_body_bone.unsqueeze(0),
joint_set.lower_body_parent)[1][0, 7:9]
if contact_probability[0] > contact_probability[1]:
tran_b1_vel = self.last_lfoot_pos - lfoot_pos + self.gravity_velocity
else:
tran_b1_vel = self.last_rfoot_pos - rfoot_pos + self.gravity_velocity
tran_b2_vel = root_rotation.mm(velocity[self.num_past_frame].cpu().view(3, 1)).view(3) / 60 * vel_scale
weight = self._prob_to_weight(contact_probability.max())
velocity = art.math.lerp(tran_b2_vel, tran_b1_vel, weight)
# remove penetration
current_foot_y = self.current_root_y + min(lfoot_pos[1].item(), rfoot_pos[1].item())
if current_foot_y + velocity[1].item() <= self.floor_y:
velocity[1] = self.floor_y - current_foot_y
self.current_root_y += velocity[1].item()
self.last_lfoot_pos, self.last_rfoot_pos = lfoot_pos, rfoot_pos
self.imu = imu
self.last_root_pos += velocity
return pose, self.last_root_pos.clone()
@staticmethod
def velocity_to_root_position(velocity):
r"""
Change velocity to root position. (not optimized)
:param velocity: Velocity tensor in shape [num_frame, 3].
:return: Translation tensor in shape [num_frame, 3] for root positions.
"""
return torch.stack([velocity[:i+1].sum(dim=0) for i in range(velocity.shape[0])])