Skip to content

Example of Anomaly Detection using Convolutional Variational Auto-Encoder (CVAE)

Notifications You must be signed in to change notification settings

YeongHyeon/CVAE-AnomalyDetection-PyTorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 

Repository files navigation

[PyTorch] Anomaly Detection using Convolutional Variational Auto-Encoder (CVAE)

Example of Anomaly Detection using Convolutional Variational Auto-Encoder (CVAE) [TensorFlow 1.x] [TensorFlow 2.x].

Architecture

Simplified VAE architecture.

Problem Definition

'Class-1' is defined as normal and the others are defined as abnormal.

Results

MNIST Fashion-MNIST
Reconstruciton of training
Latent of training
Latent walk
Latent of test
Histogram of test
AUROC 0.997 0.980

Environment

  • Python 3.7.4
  • PyTorch 1.1.0
  • Numpy 1.17.1
  • Matplotlib 3.1.1
  • Scikit Learn (sklearn) 0.21.3

Reference

[1] Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.
[2] Kullback Leibler divergence. Wikipedia

Releases

No releases published

Packages

No packages published

Languages