Skip to content

Commit

Permalink
Create README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
adi271001 authored Jul 28, 2024
1 parent f02b896 commit 2cba106
Showing 1 changed file with 123 additions and 0 deletions.
123 changes: 123 additions & 0 deletions New York City Airbnb Price Detection/Model/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,123 @@
# New York City Airbnb Price Prediction: Models

## Models Implemented
- Linear Regression (LR)
- Ridge Regression (Ridge)
- Lasso Regression (Lasso)
- ElasticNet Regression (ElasticNet)
- K-Nearest Neighbors Regression (KNN)
- Decision Tree Regression (CART)
- Random Forest Regression (RF)
- Gradient Boosting Machine (GBM)
- XGBoost
- LightGBM
- CatBoost

## Performance of the Models Based on Accuracy Scores
- **Linear Regression (LR):**
- RMSE: 70.0431
- R² Score: 0.6656
- MAE: 42.088
- MSE: 4906.0328
- Execution Time: 0.04 seconds

- **Ridge Regression (Ridge):**
- Best parameters: {'alpha': 1.0}
- RMSE: 70.0438
- R² Score: 0.6656
- MAE: 42.0872
- MSE: 4906.1288
- Execution Time: 2.1 seconds

- **Lasso Regression (Lasso):**
- Best parameters: {'alpha': 0.1}
- RMSE: 70.1052
- R² Score: 0.665
- MAE: 42.0402
- MSE: 4914.7403
- Execution Time: 1.76 seconds

- **ElasticNet Regression (ElasticNet):**
- Best parameters: {'alpha': 0.1, 'l1_ratio': 0.9}
- RMSE: 70.3563
- R² Score: 0.6626
- MAE: 42.0211
- MSE: 4950.0056
- Execution Time: 3.94 seconds

- **K-Nearest Neighbors Regression (KNN):**
- Best parameters: {'n_neighbors': 5}
- RMSE: 39.7241
- R² Score: 0.8924
- MAE: 22.0858
- MSE: 1578.0056
- Execution Time: 6.23 seconds

- **Decision Tree Regression (CART):**
- Best parameters: {'max_depth': None, 'min_samples_leaf': 1}
- RMSE: 10.2621
- R² Score: 0.9928
- MAE: 1.1928
- MSE: 105.3113
- Execution Time: 3.15 seconds

- **Random Forest Regression (RF):**
- Best parameters: {'max_depth': None, 'n_estimators': 50}
- RMSE: 6.9945
- R² Score: 0.9967
- MAE: 0.915
- MSE: 48.9226
- Execution Time: 65.45 seconds

- **Gradient Boosting Machine (GBM):**
- Best parameters: {'learning_rate': 0.1, 'n_estimators': 50}
- RMSE: 34.4356
- R² Score: 0.9192
- MAE: 19.4025
- MSE: 1185.8113
- Execution Time: 25.74 seconds

- **XGBoost:**
- Best parameters: {'learning_rate': 0.1, 'n_estimators': 50}
- RMSE: 8.4594
- R² Score: 0.9951
- MAE: 4.6483
- MSE: 71.5611
- Execution Time: 3.74 seconds

- **LightGBM:**
- Best parameters: {'learning_rate': 0.1, 'n_estimators': 50}
- RMSE: 8.9302
- R² Score: 0.9946
- MAE: 4.7429
- MSE: 79.7482
- Execution Time: 9.23 seconds

- **CatBoost:**
- Best parameters: {'depth': 6, 'iterations': 50, 'learning_rate': 0.1}
- RMSE: 22.0192
- R² Score: 0.967
- MAE: 13.5157
- MSE: 484.847
- Execution Time: 11.29 seconds

![RESULT](https://github.com/adi271001/ML-Crate/blob/airbnb-price/New%20York%20City%20Airbnb%20Price%20Detection/Images/__results___102_1.png?raw=true)
![RESULT](https://github.com/adi271001/ML-Crate/blob/airbnb-price/New%20York%20City%20Airbnb%20Price%20Detection/Images/__results___102_2.png?raw=true)
![RESULT](https://github.com/adi271001/ML-Crate/blob/airbnb-price/New%20York%20City%20Airbnb%20Price%20Detection/Images/__results___102_3.png?raw=true)
![RESULT](https://github.com/adi271001/ML-Crate/blob/airbnb-price/New%20York%20City%20Airbnb%20Price%20Detection/Images/__results___102_4.png?raw=true)
![RESULT](https://github.com/adi271001/ML-Crate/blob/airbnb-price/New%20York%20City%20Airbnb%20Price%20Detection/Images/__results___102_5.png?raw=true)
![RESULT](https://github.com/adi271001/ML-Crate/blob/airbnb-price/New%20York%20City%20Airbnb%20Price%20Detection/Images/__results___104_1.png?raw=true)
![RESULT](https://github.com/adi271001/ML-Crate/blob/airbnb-price/New%20York%20City%20Airbnb%20Price%20Detection/Images/__results___104_2.png?raw=true)
![RESULT](https://github.com/adi271001/ML-Crate/blob/airbnb-price/New%20York%20City%20Airbnb%20Price%20Detection/Images/__results___104_3.png?raw=true)
![RESULT](https://github.com/adi271001/ML-Crate/blob/airbnb-price/New%20York%20City%20Airbnb%20Price%20Detection/Images/__results___104_4.png?raw=true)
![RESULT](https://github.com/adi271001/ML-Crate/blob/airbnb-price/New%20York%20City%20Airbnb%20Price%20Detection/Images/__results___104_5.png?raw=true)

## Conclusion
From the results, we observe that Random Forest Regression (RF) performed the best in terms of RMSE, R² score, MAE, and MSE. It achieved an RMSE of 6.9945, R² score of 0.9967, MAE of 0.915, and MSE of 48.9226, albeit with a longer execution time compared to other models. K-Nearest Neighbors (KNN) and XGBoost also performed well with respectable accuracy and execution times.

## Signature
- **Name:** Aditya D
- **Github:** [https://www.github.com/adi271001](https://www.github.com/adi271001)
- **LinkedIn:** [https://www.linkedin.com/in/aditya-d-23453a179/](https://www.linkedin.com/in/aditya-d-23453a179/)
- **Topmate:** [https://topmate.io/aditya_d/](https://topmate.io/aditya_d/)
- **Twitter:** [https://x.com/ADITYAD29257528](https://x.com/ADITYAD29257528)

0 comments on commit 2cba106

Please sign in to comment.