Skip to content

Commit

Permalink
Create README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
adi271001 authored Aug 3, 2024
1 parent 600a71b commit 2e6066a
Showing 1 changed file with 57 additions and 0 deletions.
57 changes: 57 additions & 0 deletions Computer Hardware Analysis/Models/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
# GPU Price Prediction Models

## Overview
This document provides a summary of the machine learning models used to predict GPU prices, including their performance metrics such as RMSE and R2 score.

## Models Implemented

1. **Linear Regression**
2. **Ridge Regression**
3. **Lasso Regression**
4. **Decision Tree Regressor**
5. **Random Forest Regressor**
6. **Gradient Boosting Regressor**
7. **XGBoost Regressor**
8. **CatBoost Regressor**
9. **Support Vector Regressor**
10. **K-Nearest Neighbors Regressor**
11. **Extra Trees Regressor**

![results](https://github.com/adi271001/ML-Crate/blob/Computer-Hardware/Computer%20Hardware%20Analysis/Images/__results___32_0.png?raw=true)
![results](https://github.com/adi271001/ML-Crate/blob/Computer-Hardware/Computer%20Hardware%20Analysis/Images/__results___32_1.png?raw=true)
![results](https://github.com/adi271001/ML-Crate/blob/Computer-Hardware/Computer%20Hardware%20Analysis/Images/__results___32_2.png?raw=true)
![results](https://github.com/adi271001/ML-Crate/blob/Computer-Hardware/Computer%20Hardware%20Analysis/Images/__results___32_3.png?raw=true)
![results](https://github.com/adi271001/ML-Crate/blob/Computer-Hardware/Computer%20Hardware%20Analysis/Images/__results___32_4.png?raw=true)
![results](https://github.com/adi271001/ML-Crate/blob/Computer-Hardware/Computer%20Hardware%20Analysis/Images/__results___32_5.png?raw=true)
![results](https://github.com/adi271001/ML-Crate/blob/Computer-Hardware/Computer%20Hardware%20Analysis/Images/__results___32_6.png?raw=true)
![results](https://github.com/adi271001/ML-Crate/blob/Computer-Hardware/Computer%20Hardware%20Analysis/Images/__results___32_7.png?raw=true)
![results](https://github.com/adi271001/ML-Crate/blob/Computer-Hardware/Computer%20Hardware%20Analysis/Images/__results___32_8.png?raw=true)
![results](https://github.com/adi271001/ML-Crate/blob/Computer-Hardware/Computer%20Hardware%20Analysis/Images/__results___32_9.png?raw=true)
![results](https://github.com/adi271001/ML-Crate/blob/Computer-Hardware/Computer%20Hardware%20Analysis/Images/__results___32_10.png?raw=true)


## Performance of the Models

| Model | Train RMSE | Test RMSE | Train R2 | Test R2 |
|-----------------------------|---------------------|---------------------|---------------------|---------------------|
| Linear Regression | 17.65 | 302016927576.74 | 0.9991 | -1.9900E+017 |
| Ridge Regression | 123.93 | 300.17 | 0.9580 | 0.8034 |
| Lasso Regression | 134.90 | 333.59 | 0.9502 | 0.7572 |
| Decision Tree Regressor | 17.65 | 302.87 | 0.9991 | 0.7999 |
| Random Forest Regressor | 151.01 | 353.12 | 0.9376 | 0.7280 |
| Gradient Boosting Regressor | 105.99 | 307.28 | 0.9693 | 0.7940 |
| XGBoost Regressor | 38.36 | 328.19 | 0.9960 | 0.7650 |
| CatBoost Regressor | 81.89 | 330.35 | 0.9817 | 0.7619 |
| Support Vector Regressor | 626.45 | 696.85 | -0.0733 | -0.0594 |
| K-Nearest Neighbors Regressor| 290.01 | 364.72 | 0.7700 | 0.7098 |
| Extra Trees Regressor | 17.65 | 359.22 | 0.9991 | 0.7185 |

## Conclusion
The evaluation of different models based on RMSE and R2 scores highlights their strengths and weaknesses. Models like Linear Regression and Decision Tree Regressor showed lower RMSE values, while XGBoost and Gradient Boosting Regressor had higher R2 scores, indicating better fit for the data.

## Signature
- **Name:** Aditya D
- **Github:** [https://www.github.com/adi271001](https://www.github.com/adi271001)
- **LinkedIn:** [https://www.linkedin.com/in/aditya-d-23453a179/](https://www.linkedin.com/in/aditya-d-23453a179/)
- **Topmate:** [https://topmate.io/aditya_d/](https://topmate.io/aditya_d/)
- **Twitter:** [https://x.com/ADITYAD29257528](https://x.com/ADITYAD29257528)

0 comments on commit 2e6066a

Please sign in to comment.