Skip to content

Commit

Permalink
update
Browse files Browse the repository at this point in the history
  • Loading branch information
zandjyo committed Oct 17, 2024
1 parent e8aa55a commit 82583f0
Show file tree
Hide file tree
Showing 768 changed files with 12,018 additions and 555 deletions.
21 changes: 12 additions & 9 deletions 2023_ASSESSMENT/DATA_EXPLORE/Cummulative_catch_plots.r
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ akfin = DBI::dbConnect(odbc::odbc(), "akfin",



Plot_CUMMULATIVE<-function(species="'PCOD'",FMP_AREA="'BSAI'",subarea="'BS'",syear=2020)
Plot_CUMMULATIVE<-function(species="'PCOD'",FMP_AREA="'BSAI'",subarea="'BS'",syear=2018)
{
library(RODBC)
library(data.table)
Expand Down Expand Up @@ -47,9 +47,9 @@ Plot_CUMMULATIVE<-function(species="'PCOD'",FMP_AREA="'BSAI'",subarea="'BS'",sye

grid<-data.table(expand.grid(YEAR=unique(W1$YEAR),FMP_GEAR=unique(W1$FMP_GEAR),WEEK=0:52))

grid2<-grid[YEAR==2021 & WEEK<42]
grid<-grid[YEAR<2021]
grid<-rbind(grid,grid2)
#grid2<-grid[YEAR==2021 & WEEK<42]
#grid<-grid[YEAR<2021]
#grid<-rbind(grid,grid2)
W1=merge(W1,grid,all=T)
W1[is.na(TONS)]$TONS<-0.00

Expand All @@ -62,12 +62,15 @@ Plot_CUMMULATIVE<-function(species="'PCOD'",FMP_AREA="'BSAI'",subarea="'BS'",sye
}

cYear<-year(Sys.time())

d<- ggplot(data=W1,aes(x=WEEK,y=CUM,color=factor(YEAR),shape=factor(YEAR)))
nc=(length(unique(W1$YEAR)))-1
okabe <- c("#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7")
colors=c(okabe[1:nc],'black')
shapes=c(as.numeric(14+(1:nc)),1)
d<- ggplot(data=W1,aes(x=WEEK,y=CUM,color=factor(YEAR),shape=factor(YEAR)))
d<- d+geom_point()+geom_path(aes(group=YEAR))#+geom_line(data=W1[YEAR==cYear],color="black",size=1)
d<-d+facet_wrap(~FMP_GEAR,scale="free_y")
d<-d+theme_bw()+theme(axis.text.x = element_text(hjust=0, angle = 90))
d<-d+labs(title=paste0(species," Area = ",FMP_AREA," Subarea = ",subarea), y="Cummulative Catch (t)",color="Year")
d<-d+facet_wrap(~FMP_GEAR,scale="free_y")+scale_color_manual(values=colors)
d<-d+theme_bw()+theme(axis.text.x = element_text(hjust=0, angle = 90))+scale_shape_manual(values=shapes)
d<-d+labs(title=paste0(species," Area = ",FMP_AREA," Subarea = ",subarea), y="Cummulative Catch (t)",shape="Year",color="Year")
print(d)
}

Expand Down
14 changes: 7 additions & 7 deletions 2023_ASSESSMENT/Functions/DATA_EXPLORE/INSEASON_GRAPHS.R
Original file line number Diff line number Diff line change
Expand Up @@ -131,7 +131,7 @@ windows()
d<-d+geom_boxplot()
d<-d+facet_wrap(~YEAR)
d<-d+xlab("Year")+ylab("log(CPUE)")
d<-d+ggtitle(paste0("CPUE by month for BS longline"))
d<-d+ggtitle(paste0("CPUE by month for BS longline"))+theme_bw()
d
windows()
d<-ggplot(data_10[GEAR%in% c("BOTTOM TRAWL")&NMFS_AREA%in%c(500:539)],aes(as.factor(MONTH),log(CPUE_W),group=as.factor(MONTH)))
Expand Down Expand Up @@ -331,7 +331,7 @@ data$FREQUENCY<-as.numeric(data$FREQUENCY)
#data<-data[(data$WEIGHT/data$OFFICIAL_TOTAL_CATCH)>0.3]
#dataL<-data[GEAR_TYPE%in%c(6,8)]

x6<-untable(data[,c(1:23)],num=data$FREQUENCY)
x6<-reshape::untable(data[,c(1:23)],num=data$FREQUENCY)

#data<-rbind(dataT,dataL)
#x6<-untable(data[,c(1:21)],num=data$FREQUENCY)
Expand All @@ -357,35 +357,35 @@ x6[NMFS_AREA%in%c(610)]$AREA<-"Western GOA"
x6[NMFS_AREA%in%c(620,630)]$AREA<-"Central GOA"
x6[NMFS_AREA%in%c(540:544)]$AREA<-"AI"

d<-ggplot(x6[YEAR==2018], aes(x=LENGTH)) + geom_histogram(binwidth=1)
d<-ggplot(x6[YEAR==2024], aes(x=LENGTH)) + geom_histogram(binwidth=1)
d<-d+facet_wrap(~GEAR)


d<-ggplot(x6[YEAR%in%c(2022,2023)&NMFS_AREA %in% c(500:539)&GEAR_TYPE%in%c(1,6,8)], aes(x=LENGTH,fill=factor(AREA),y=..density..)) + geom_histogram(binwidth=1)
d<-ggplot(x6[YEAR%in%c(2023,2024)&NMFS_AREA %in% c(500:539)&GEAR_TYPE%in%c(1,6,8)], aes(x=LENGTH,fill=factor(AREA),y=..density..)) + geom_histogram(binwidth=1)
d<-d+facet_wrap(YEAR~GEAR)
d<-d+xlim(0,120)
d<-d+xlab("Fork Length (cm)")
d



d<-ggplot(x6[YEAR%in%c(2022,2023)&NMFS_AREA %in% c(500:539)&GEAR_TYPE%in%c(8)&MONTH %in% c("01","02","03")], aes(x=LENGTH,fill=AREA,y=..density..)) + geom_histogram(binwidth=1)
d<-ggplot(x6[YEAR%in%c(2023,2024)&NMFS_AREA %in% c(500:539)&GEAR_TYPE%in%c(8)&MONTH %in% c("01","02","03")], aes(x=LENGTH,fill=AREA,y=..density..)) + geom_histogram(binwidth=1)
d<-d+facet_wrap(YEAR~AREA)
d<-d+xlim(0,120)
d<-d+xlab("Fork Length (cm)")
d



d<-ggplot(x6[YEAR%in%c(2022,2023)&NMFS_AREA %in% c(500:539)&GEAR_TYPE%in%c(1)&MONTH %in% c("01","02","03")], aes(x=LENGTH,fill=AREA,y=..density..)) + geom_histogram(binwidth=1, fill='purple')
d<-ggplot(x6[YEAR%in%c(2023,2024)&NMFS_AREA %in% c(500:539)&GEAR_TYPE%in%c(1)&MONTH %in% c("01","02","03")], aes(x=LENGTH,fill=AREA,y=..density..)) + geom_histogram(binwidth=1, fill='purple')
d<-d+facet_wrap(YEAR~AREA)
d<-d+xlim(0,120)
d<-d+xlab("Fork Length (cm)")
d



d<-ggplot(x6[YEAR%in%c(2022,2023)&NMFS_AREA %in% c(500:539)&GEAR_TYPE%in%c(1)&MONTH %in% c("01","02","03")], aes(x=LENGTH,fill=AREA,y=..density..)) + geom_histogram(binwidth=1)
d<-ggplot(x6[YEAR%in%c(2023,2024)&NMFS_AREA %in% c(500:539)&GEAR_TYPE%in%c(1)&MONTH %in% c("01","02","03")], aes(x=LENGTH,fill=AREA,y=..density..)) + geom_histogram(binwidth=1)
d<-d+facet_wrap(YEAR~AREA)
d<-d+xlim(0,120)
d<-d+xlab("Fork Length (cm)")
Expand Down
159 changes: 155 additions & 4 deletions docs/2024_ASSESSMENT/Functions/DATA_EXPLORE/Catch_map.r
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ FROM
INNER JOIN norpac.atl_lov_gear_type ON obsint.debriefed_haul.gear_type = norpac.atl_lov_gear_type.gear_type_code
WHERE
obsint.debriefed_spcomp.species = 202
AND obsint.debriefed_spcomp.year > 2019
AND obsint.debriefed_spcomp.year > 1990
AND obsint.debriefed_haul.nmfs_area > 500
AND obsint.debriefed_haul.nmfs_area < 539
AND norpac.atl_lov_gear_type.geartype_form = 'H'"
Expand All @@ -30,7 +30,7 @@ WHERE
dplyr::rename_all(toupper) %>%
data.table()

CATCH<-read.csv("CATCH.CSV")
#CATCH<-read.csv("CATCH.CSV")
CATCH<-data.table(CATCH)
CATCH$CPUE=0
CATCH[GEAR_TYPE%in%c(6,8)]$CPUE<-CATCH[GEAR_TYPE%in%c(6,8)]$EXTRAPOLATED_WEIGHT/CATCH[GEAR_TYPE%in%c(6,8)]$TOTAL_HOOKS_POTS
Expand All @@ -41,8 +41,159 @@ CATCH1<-data.frame(CATCH)

make_idw_map_FSH(x = subset(CATCH1,YEAR==2021&GEAR_TYPE%in%c(1:4)), # Pass data as a data frame
region = "bs.all", # Predefined bs.all area
set.breaks = "Jenks", # Gets Jenks breaks from classint::classIntervals()
set.breaks = c(0,5,10,15,30,900), # Gets Jenks breaks from classint::classIntervals()
in.crs = "+proj=longlat", # Set input coordinate reference system
out.crs = "EPSG:3338", # Set output coordinate reference system
grid.cell = c(20000, 20000), # 20x20km grid
key.title = "test")
key.title = "test")








library(sf)
library(raster)
library(ggplot2)


# Load the shapefile
shapefile <- st_read("suvevey_area.shp")

# Load your data

# Load the shapefile
shapefile <- st_read("suvevey_area.shp")
akland<- st_read("akland2.shp")
sgrid<-st_read("survey_grid.shp")

grat<-st_read("graticule.shp")
bathym<-st_read("bathymetry.shp")


# Load your data
data <- CATCH

# Convert your data to a sf object
data_sf <- st_as_sf(data, coords = c("LONGITUDE", "LATITUDE"), crs = 4326)

# Create a grid of polygons with a resolution of 5 units (change this to your desired resolution)
grid <- st_make_grid(shapefile, cellsize = 0.5, square = TRUE)


grid<-sgrid
# Convert the grid to a sf object
grid_sf <- st_sf(geometry = st_sfc(grid))

grid_sf<-st_as_sfc(geometry = st_sfc(grid))

# Join the data to the grid
grid_with_data <- st_join(grid_sf, data_sf)




# Group by grid cell and sum the EXTRAPOLATED_WEIGHT
grid_with_data <- grid_with_data %>%
group_by(geometry, YEAR) %>%
summarise(EXTRAPOLATED_WEIGHT = sum(EXTRAPOLATED_WEIGHT, na.rm = TRUE))



grid_with_data1 <- subset(grid_with_data, !is.na(YEAR))
grid_with_data1 <- subset(grid_with_data1, YEAR %in% c(2010,2017:2023))


# Plot the data

akland_cropped <- st_crop(akland, grid_sf)

bathym_cropped <- st_crop(bathym, grid_sf)

trans_power <- scales::trans_new(
name = "power",
transform = function(x) x^(1/5),
inverse = function(x) x^5
)


min_weight <- min(grid_with_data1$EXTRAPOLATED_WEIGHT/1000, na.rm = TRUE)
max_weight <- max(grid_with_data1$EXTRAPOLATED_WEIGHT/1000, na.rm = TRUE)

# Generate breaks at regular intervals across the range
breaks <- round(seq(from = min_weight, to = max_weight, length.out = 5))

ggplot(grid_with_data1) +
geom_sf(aes(fill = EXTRAPOLATED_WEIGHT/1000), color = NA) +
geom_sf(data = akland_cropped, fill = "gray50", color = NA) +
geom_sf(data = shapefile, fill=NA,color = 'gray20',linetype=1) +
scale_fill_gradient(low="light blue",high= "red", trans = "sqrt", breaks = breaks) +
theme_bw(base_size=20) +
facet_wrap(~YEAR,ncol=4)+labs(fill="Observed catch (t)")






centroids <- st_centroid(grid_with_data1)


# Define a function to calculate the weighted centroid of a group
weighted_centroid_group <- function(data, weight) {
# Calculate the weighted coordinates
weighted_coords <- st_coordinates(data$geometry) * weight
# Calculate the total weight
total_weight <- sum(weight)
# Calculate the weighted centroid
centroid <- colSums(weighted_coords) / total_weight
# Convert the centroid to an sf point
centroid_sf <- st_as_sf(as.data.frame(t(centroid)), coords = c("X", "Y"), crs = st_crs(data$geometry))
return(centroid_sf)
}

# Group by YEAR and calculate the weighted centroid of each group
centroids_by_year <- centroids %>%
group_by(YEAR) %>%
group_map(~ weighted_centroid_group(.x, .x$EXTRAPOLATED_WEIGHT))



# Collapse the list into a single sf object
centroids_by_year_sf <- do.call(rbind, centroids_by_year)
years <- 1991:2023
centroids_by_year_sf$YEAR<-years



centroids_by_year_df <- as.data.frame(st_coordinates(centroids_by_year_sf))

# Add the YEAR column
centroids_by_year_df$YEAR <- centroids_by_year_sf$YEAR



target_crs <- "+proj=utm +zone=2 +datum=WGS84 +units=m +no_defs"

# Transform the CRS of the sf object
centroids_by_year_sf_utm <- st_transform(centroids_by_year_sf, target_crs)

# Convert the sf object to a data frame
centroids_by_year_df_utm <- as.data.frame(st_coordinates(centroids_by_year_sf_utm))

centroids_by_year_df_utm$YEAR <- centroids_by_year_sf_utm$YEAR




ggplot(centroids_by_year_df_utm,aes(x=YEAR,y=Y/1000))+geom_point(size=2)+geom_line()+theme_bw(base_size=16)+labs(x='Year',y='Northings (km)')



ggplot(centroids_by_year_sf)+
geom_sf(aes(color = factor(YEAR))) +
geom_sf(data = akland_cropped, fill = "gray50", color = NA) +
geom_sf(data = shapefile, fill=NA,color = 'gray20',linetype=1) +
theme_bw()+labs(title='Fishery Center of Gravity',color='Year')
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Original file line number Diff line number Diff line change
Expand Up @@ -94,8 +94,8 @@ <h2><a name="Home">Home</h2>
3.30.21.00;_safe;_compile_date:_Feb 10 2023;_Stock_Synthesis_by_Richard_Methot_(NOAA)_using_ADMB_13.1</p>

<p><b>r4ss info:<br></b>
Version: 1.47.0<br>Date: NULL<br>Built: R 4.2.2; ; 2023-03-02 02:48:27 UTC; windows<br>RemoteType: github<br>RemoteHost: api.github.com<br>RemoteRepo: r4ss<br>RemoteUsername: r4ss<br>RemotePkgRef: r4ss/r4ss<br>RemoteRef: HEAD<br>RemoteSha: 420b187f5d78ff696d39363c214a0ef16d99c462<br><p><b>Starting time of model:</b>
Thu Oct 19 23:03:43 2023</p>
Version: 1.49.2<br>Date: NULL<br>Built: R 4.3.2; ; 2024-07-12 16:02:11 UTC; windows<br>RemoteType: github<br>RemoteHost: api.github.com<br>RemoteRepo: r4ss<br>RemoteUsername: r4ss<br>RemoteRef: HEAD<br>RemoteSha: b6976cd6317d75dddbad9012ca788cd8777254eb<br><p><b>Starting time of model:</b>
Tue Oct 8 10:00:00 2024</p>

<p><b>Warnings (from file warnings.sso):</b></p>

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -95,12 +95,11 @@ <h2><a name="AgeComp">AgeComp</h2>
<br><i><small>file: <a href='comp_agefit__aggregated_across_time.png'>comp_agefit__aggregated_across_time.png</a></small></i>
<p align=left><a href='comp_agefit__multi-fleet_comparison.png'><img src='comp_agefit__multi-fleet_comparison.png' border=0 width=500 alt=''></a><br>Pearson residuals, comparing across fleets <br>
Closed bubbles are positive residuals (observed > expected) and open bubbles are negative residuals (observed < expected).<br><i><small>file: <a href='comp_agefit__multi-fleet_comparison.png'>comp_agefit__multi-fleet_comparison.png</a></small></i>
<p align=left><a href='comp_agefit_flt2mkt0_page1.png'><img src='comp_agefit_flt2mkt0_page1.png' border=0 width=500 alt=''></a><br>Age comps, whole catch, Survey (plot 1 of 2).<br><br>'N adj.' is the input sample size after data-weighting adjustment. N eff. is the calculated effective sample size used in the McAllister-Ianelli tuning method.<br><i><small>file: <a href='comp_agefit_flt2mkt0_page1.png'>comp_agefit_flt2mkt0_page1.png</a></small></i>
<p align=left><a href='comp_agefit_flt2mkt0_page2.png'><img src='comp_agefit_flt2mkt0_page2.png' border=0 width=500 alt=''></a><br>Age comps, whole catch, Survey (plot 1 of 2).<br><br>'N adj.' is the input sample size after data-weighting adjustment. N eff. is the calculated effective sample size used in the McAllister-Ianelli tuning method. (plot 2 of 2)<br><i><small>file: <a href='comp_agefit_flt2mkt0_page2.png'>comp_agefit_flt2mkt0_page2.png</a></small></i>
<p align=left><a href='comp_agefit_residsflt2mkt0_page2.png'><img src='comp_agefit_residsflt2mkt0_page2.png' border=0 width=500 alt=''></a><br>Pearson residuals, whole catch, Survey (max=2.54) (plot 2 of 2) <br>
Closed bubbles are positive residuals (observed > expected) and open bubbles are negative residuals (observed < expected).<br><i><small>file: <a href='comp_agefit_residsflt2mkt0_page2.png'>comp_agefit_residsflt2mkt0_page2.png</a></small></i>
<p align=left><a href='comp_agefit_sampsize_flt2mkt0.png'><img src='comp_agefit_sampsize_flt2mkt0.png' border=0 width=500 alt=''></a><br>N-EffN comparison, Age comps, whole catch, Survey<br><i><small>file: <a href='comp_agefit_sampsize_flt2mkt0.png'>comp_agefit_sampsize_flt2mkt0.png</a></small></i>
<p align=left><a href='comp_agefit_data_weighting_TA1.8_Survey.png'><img src='comp_agefit_data_weighting_TA1.8_Survey.png' border=0 width=500 alt=''></a><br>WARNING: this figure is based on multinomial likelihood and has not been updated to account for Dirichlet-Multinomial likelihood and the sample size adjustment associated with the estimated log(<i>&#920</i>) parameters.<br><br> Mean age for Survey with 95% confidence intervals based on current samples sizes.<br>Francis data weighting method TA1.8: thinner intervals (with capped ends) show result of further adjusting sample sizes based on suggested multiplier (with 95% interval) for age data from Survey:<br>0.9984 (0.7291-1.7331) <br><br>For more info, see<br> <blockquote>Francis, R.I.C.C. (2011). Data weighting in statistical fisheries stock assessment models. <i>Can. J. Fish. Aquat. Sci.</i> 68: 1124-1138. <a href=https://doi.org/10.1139/f2011-025> https://doi.org/10.1139/f2011-025</a> </blockquote><br><i><small>file: <a href='comp_agefit_data_weighting_TA1.8_Survey.png'>comp_agefit_data_weighting_TA1.8_Survey.png</a></small></i>
<p align=left><a href='comp_gstagefit_flt2mkt0.png'><img src='comp_gstagefit_flt2mkt0.png' border=0 width=500 alt=''></a><br>Excluded age comps, whole catch, Survey.<br><br>'N adj.' is the input sample size after data-weighting adjustment. N eff. is the calculated effective sample size used in the McAllister-Ianelli tuning method.<br><i><small>file: <a href='comp_gstagefit_flt2mkt0.png'>comp_gstagefit_flt2mkt0.png</a></small></i>
<p align=left><a href='comp_gstagefit_residsflt2mkt0.png'><img src='comp_gstagefit_residsflt2mkt0.png' border=0 width=500 alt=''></a><br>Pearson residuals, whole catch, Survey (max=NA) <br>
<p align=left><a href='comp_agefit_flt2mkt0.png'><img src='comp_agefit_flt2mkt0.png' border=0 width=500 alt=''></a><br>Age comps, whole catch, survey.<br><br>'N adj.' is the input sample size after data-weighting adjustment. N eff. is the calculated effective sample size used in the McAllister-Ianelli tuning method.<br><i><small>file: <a href='comp_agefit_flt2mkt0.png'>comp_agefit_flt2mkt0.png</a></small></i>
<p align=left><a href='comp_agefit_residsflt2mkt0.png'><img src='comp_agefit_residsflt2mkt0.png' border=0 width=500 alt=''></a><br>Pearson residuals, whole catch, survey (max=2.81) <br>
Closed bubbles are positive residuals (observed > expected) and open bubbles are negative residuals (observed < expected).<br><i><small>file: <a href='comp_agefit_residsflt2mkt0.png'>comp_agefit_residsflt2mkt0.png</a></small></i>
<p align=left><a href='comp_agefit_sampsize_flt2mkt0.png'><img src='comp_agefit_sampsize_flt2mkt0.png' border=0 width=500 alt=''></a><br>N-EffN comparison, Age comps, whole catch, survey<br><i><small>file: <a href='comp_agefit_sampsize_flt2mkt0.png'>comp_agefit_sampsize_flt2mkt0.png</a></small></i>
<p align=left><a href='comp_agefit_data_weighting_TA1.8_survey.png'><img src='comp_agefit_data_weighting_TA1.8_survey.png' border=0 width=500 alt=''></a><br>Mean age for survey with 95% confidence intervals based on current sample sizes.<br>Francis data weighting method TA1.8: thinner intervals (with capped ends) show result of further adjusting sample sizes based on suggested multiplier (with 95% interval) for age data from survey:<br>1.0016 (0.7204-1.7837) <br>For more info, see <a href=https://doi.org/10.1139/f2011-025> Francis (2011)</a>.<br><i><small>file: <a href='comp_agefit_data_weighting_TA1.8_survey.png'>comp_agefit_data_weighting_TA1.8_survey.png</a></small></i>
<p align=left><a href='comp_gstagefit_flt2mkt0.png'><img src='comp_gstagefit_flt2mkt0.png' border=0 width=500 alt=''></a><br>Excluded age comps, whole catch, survey.<br><br>'N adj.' is the input sample size after data-weighting adjustment. N eff. is the calculated effective sample size used in the McAllister-Ianelli tuning method.<br><i><small>file: <a href='comp_gstagefit_flt2mkt0.png'>comp_gstagefit_flt2mkt0.png</a></small></i>
<p align=left><a href='comp_gstagefit_residsflt2mkt0.png'><img src='comp_gstagefit_residsflt2mkt0.png' border=0 width=500 alt=''></a><br>Pearson residuals, whole catch, survey (max=NA) <br>
Closed bubbles are positive residuals (observed > expected) and open bubbles are negative residuals (observed < expected).<br><i><small>file: <a href='comp_gstagefit_residsflt2mkt0.png'>comp_gstagefit_residsflt2mkt0.png</a></small></i>
Original file line number Diff line number Diff line change
Expand Up @@ -106,5 +106,3 @@ <h2><a name="Bio">Bio</h2>
<p align=left><a href='bio23_timevarygrowthcontour_sex1.png'><img src='bio23_timevarygrowthcontour_sex1.png' border=0 width=500 alt=''></a><br>Contour plot of time-varying growth<br><i><small>file: <a href='bio23_timevarygrowthcontour_sex1.png'>bio23_timevarygrowthcontour_sex1.png</a></small></i>
<p align=left><a href='bio24_time-varying_L_at_Amin_Fem_GP_1.png'><img src='bio24_time-varying_L_at_Amin_Fem_GP_1.png' border=0 width=500 alt=''></a><br>Time-varying mortality and growth parameters<br><i><small>file: <a href='bio24_time-varying_L_at_Amin_Fem_GP_1.png'>bio24_time-varying_L_at_Amin_Fem_GP_1.png</a></small></i>
<p align=left><a href='bio24_time-varying_Richards_Fem_GP_1.png'><img src='bio24_time-varying_Richards_Fem_GP_1.png' border=0 width=500 alt=''></a><br>Time-varying mortality and growth parameters<br><i><small>file: <a href='bio24_time-varying_Richards_Fem_GP_1.png'>bio24_time-varying_Richards_Fem_GP_1.png</a></small></i>
<p align=left><a href='bio24_time-varying_AgeKeyParm2.png'><img src='bio24_time-varying_AgeKeyParm2.png' border=0 width=500 alt=''></a><br>Time-varying mortality and growth parameters<br><i><small>file: <a href='bio24_time-varying_AgeKeyParm2.png'>bio24_time-varying_AgeKeyParm2.png</a></small></i>
<p align=left><a href='bio24_time-varying_AgeKeyParm3.png'><img src='bio24_time-varying_AgeKeyParm3.png' border=0 width=500 alt=''></a><br>Time-varying mortality and growth parameters<br><i><small>file: <a href='bio24_time-varying_AgeKeyParm3.png'>bio24_time-varying_AgeKeyParm3.png</a></small></i>
Loading

0 comments on commit 82583f0

Please sign in to comment.