Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[MNN:Sync] Sync Internal 2.6.0 #2469

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/compile/cmake.md
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,7 @@ MNN使用CMake构建项目,CMake中的宏定义列表如下:
| MNN_CUDA | 是否构建`Cuda`后端,默认为`OFF` |
| MNN_CUDA_PROFILE | 是否打开CUDA profile工具,默认为`OFF` |
| MNN_CUDA_QUANT | 是否打开CUDA 量化文件编译,默认为`OFF` |
| MNN_CUDA_BF16 | 是否打开CUDA Bf16文件编译,默认为`OFF` |
| MNN_TENSORRT | 是否构建`TensorRT`后端,默认为`OFF` |
| MNN_COREML | 是否构建`CoreML`后端,默认为`OFF` |
| MNN_NNAPI | 是否构建`NNAPI`后端,默认为`OFF` |
Expand Down
1 change: 1 addition & 0 deletions docs/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,7 @@
:maxdepth: 1
:caption: 表达式
:name: expr

inference/expr

.. toctree::
Expand Down
4 changes: 2 additions & 2 deletions include/MNN/MNNDefine.h
Original file line number Diff line number Diff line change
Expand Up @@ -68,7 +68,7 @@ MNN_ERROR("Check failed: %s ==> %s\n", #success, #log); \
#define STR_IMP(x) #x
#define STR(x) STR_IMP(x)
#define MNN_VERSION_MAJOR 2
#define MNN_VERSION_MINOR 5
#define MNN_VERSION_PATCH 3
#define MNN_VERSION_MINOR 6
#define MNN_VERSION_PATCH 0
#define MNN_VERSION STR(MNN_VERSION_MAJOR) "." STR(MNN_VERSION_MINOR) "." STR(MNN_VERSION_PATCH)
#endif /* MNNDefine_h */
16 changes: 8 additions & 8 deletions project/ios/MNN.xcodeproj/project.pbxproj
Original file line number Diff line number Diff line change
Expand Up @@ -763,6 +763,8 @@
C4F906B327688C3A0026B847 /* NMSModule.hpp in Headers */ = {isa = PBXBuildFile; fileRef = C4F906B127688C3A0026B847 /* NMSModule.hpp */; };
C4F906B427688C3A0026B847 /* NMSModule.cpp in Sources */ = {isa = PBXBuildFile; fileRef = C4F906B227688C3A0026B847 /* NMSModule.cpp */; };
C4FB6CB22769DF0800963B07 /* GeometryCumSum.cpp in Sources */ = {isa = PBXBuildFile; fileRef = C4FB6CB12769DF0800963B07 /* GeometryCumSum.cpp */; };
CE125CC82A52BF6B003698C9 /* MNNBilinearSampleC8.S in Sources */ = {isa = PBXBuildFile; fileRef = CE125CC62A52BF6B003698C9 /* MNNBilinearSampleC8.S */; };
CE125CC92A52BF6B003698C9 /* MNNBilinearLineC8.S in Sources */ = {isa = PBXBuildFile; fileRef = CE125CC72A52BF6B003698C9 /* MNNBilinearLineC8.S */; };
CE7DC00028E2DE6B00797689 /* ShapeConvTranspose3D.cpp in Sources */ = {isa = PBXBuildFile; fileRef = CE7DBFFF28E2DE6B00797689 /* ShapeConvTranspose3D.cpp */; };
CE9AFED628E54E3300566949 /* CPUInterp3D.cpp in Sources */ = {isa = PBXBuildFile; fileRef = CE9AFED428E54E3300566949 /* CPUInterp3D.cpp */; };
CE9AFED728E54E3300566949 /* CPUInterp3D.hpp in Headers */ = {isa = PBXBuildFile; fileRef = CE9AFED528E54E3300566949 /* CPUInterp3D.hpp */; };
Expand All @@ -785,9 +787,7 @@
CEDB211C2846D59C00AE9DC4 /* mobilenet_v2.caffe.mnn in Resources */ = {isa = PBXBuildFile; fileRef = CEDB211B2846D59C00AE9DC4 /* mobilenet_v2.caffe.mnn */; };
CEDB211D284706F900AE9DC4 /* MNN.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 0F1465B71FA18D1000F9860A /* MNN.framework */; };
CEDB211E2847070600AE9DC4 /* MNN.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 0F1465B71FA18D1000F9860A /* MNN.framework */; };
CEE9B9522A3AA4C4006438F2 /* MNNBilinearSampleC16.S in Sources */ = {isa = PBXBuildFile; fileRef = CEE9B94E2A3AA4C4006438F2 /* MNNBilinearSampleC16.S */; };
CEE9B9532A3AA4C4006438F2 /* MNNCubicLineC16.S in Sources */ = {isa = PBXBuildFile; fileRef = CEE9B94F2A3AA4C4006438F2 /* MNNCubicLineC16.S */; };
CEE9B9542A3AA4C4006438F2 /* MNNBilinearLineC16.S in Sources */ = {isa = PBXBuildFile; fileRef = CEE9B9502A3AA4C4006438F2 /* MNNBilinearLineC16.S */; };
CEE9B9552A3AA4C4006438F2 /* MNNCubicSampleC16.S in Sources */ = {isa = PBXBuildFile; fileRef = CEE9B9512A3AA4C4006438F2 /* MNNCubicSampleC16.S */; };
CEE9B95A2A3AA4D4006438F2 /* MNNCubicLineC16.S in Sources */ = {isa = PBXBuildFile; fileRef = CEE9B9562A3AA4D4006438F2 /* MNNCubicLineC16.S */; };
CEE9B95B2A3AA4D4006438F2 /* MNNBilinearLineC8.S in Sources */ = {isa = PBXBuildFile; fileRef = CEE9B9572A3AA4D4006438F2 /* MNNBilinearLineC8.S */; };
Expand Down Expand Up @@ -1590,6 +1590,8 @@
C4F906B127688C3A0026B847 /* NMSModule.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = NMSModule.hpp; sourceTree = "<group>"; };
C4F906B227688C3A0026B847 /* NMSModule.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = NMSModule.cpp; sourceTree = "<group>"; };
C4FB6CB12769DF0800963B07 /* GeometryCumSum.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = GeometryCumSum.cpp; sourceTree = "<group>"; };
CE125CC62A52BF6B003698C9 /* MNNBilinearSampleC8.S */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.asm; path = MNNBilinearSampleC8.S; sourceTree = "<group>"; };
CE125CC72A52BF6B003698C9 /* MNNBilinearLineC8.S */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.asm; path = MNNBilinearLineC8.S; sourceTree = "<group>"; };
CE7DBFFF28E2DE6B00797689 /* ShapeConvTranspose3D.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = ShapeConvTranspose3D.cpp; sourceTree = "<group>"; };
CE9AFED428E54E3300566949 /* CPUInterp3D.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = CPUInterp3D.cpp; sourceTree = "<group>"; };
CE9AFED528E54E3300566949 /* CPUInterp3D.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = CPUInterp3D.hpp; sourceTree = "<group>"; };
Expand All @@ -1614,9 +1616,7 @@
CEDB21172846D58200AE9DC4 /* testcat.jpg */ = {isa = PBXFileReference; lastKnownFileType = image.jpeg; name = testcat.jpg; path = ../../../demo/model/MobileNet/testcat.jpg; sourceTree = "<group>"; };
CEDB21182846D58200AE9DC4 /* synset_words.txt */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = text; name = synset_words.txt; path = ../../../demo/model/MobileNet/synset_words.txt; sourceTree = "<group>"; };
CEDB211B2846D59C00AE9DC4 /* mobilenet_v2.caffe.mnn */ = {isa = PBXFileReference; lastKnownFileType = file; name = mobilenet_v2.caffe.mnn; path = ../../../resource/model/MobileNet/v2/mobilenet_v2.caffe.mnn; sourceTree = "<group>"; };
CEE9B94E2A3AA4C4006438F2 /* MNNBilinearSampleC16.S */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.asm; path = MNNBilinearSampleC16.S; sourceTree = "<group>"; };
CEE9B94F2A3AA4C4006438F2 /* MNNCubicLineC16.S */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.asm; path = MNNCubicLineC16.S; sourceTree = "<group>"; };
CEE9B9502A3AA4C4006438F2 /* MNNBilinearLineC16.S */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.asm; path = MNNBilinearLineC16.S; sourceTree = "<group>"; };
CEE9B9512A3AA4C4006438F2 /* MNNCubicSampleC16.S */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.asm; path = MNNCubicSampleC16.S; sourceTree = "<group>"; };
CEE9B9562A3AA4D4006438F2 /* MNNCubicLineC16.S */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.asm; path = MNNCubicLineC16.S; sourceTree = "<group>"; };
CEE9B9572A3AA4D4006438F2 /* MNNBilinearLineC8.S */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.asm; path = MNNBilinearLineC8.S; sourceTree = "<group>"; };
Expand Down Expand Up @@ -2501,8 +2501,8 @@
92FF013A23AA0B4E00AC97F6 /* arm32 */ = {
isa = PBXGroup;
children = (
CEE9B9502A3AA4C4006438F2 /* MNNBilinearLineC16.S */,
CEE9B94E2A3AA4C4006438F2 /* MNNBilinearSampleC16.S */,
CE125CC72A52BF6B003698C9 /* MNNBilinearLineC8.S */,
CE125CC62A52BF6B003698C9 /* MNNBilinearSampleC8.S */,
CEE9B94F2A3AA4C4006438F2 /* MNNCubicLineC16.S */,
CEE9B9512A3AA4C4006438F2 /* MNNCubicSampleC16.S */,
950B28DF29F627E00002F454 /* MNNBinaryAddInt8.S */,
Expand Down Expand Up @@ -3356,6 +3356,7 @@
950B28ED29F627F70002F454 /* MNNBinaryMulInt8.S in Sources */,
481FA853259C27E00047F01F /* ShapeTensorArray.cpp in Sources */,
6A131E3F25823349002EC3D6 /* PluginShapeInference.cpp in Sources */,
CE125CC82A52BF6B003698C9 /* MNNBilinearSampleC8.S in Sources */,
92FF025723AA0B5A00AC97F6 /* CPUQuanConvolutionDepthwise.cpp in Sources */,
48034563254157CE004738E3 /* MNNNV21ToBGRAUnit.S in Sources */,
48FA474823AA127B00172C3B /* Expr.cpp in Sources */,
Expand All @@ -3375,7 +3376,6 @@
48747D61245D9E33000B9709 /* ConvertUtils.cpp in Sources */,
92FF043B23AA0B7100AC97F6 /* ShapeDetectionPostProcess.cpp in Sources */,
48417FF124D13BF50056D9A7 /* GeometryELU.cpp in Sources */,
CEE9B9522A3AA4C4006438F2 /* MNNBilinearSampleC16.S in Sources */,
48C84B9A250F720C00EE7666 /* CPULayerNorm.cpp in Sources */,
4DF87C4A2887D3560003E2D4 /* calib3d.cpp in Sources */,
48F34734273A7C8400C45394 /* ImageProcessFunction.cpp in Sources */,
Expand Down Expand Up @@ -3515,6 +3515,7 @@
CECF8C7D299CAD9400D3875B /* md5.c in Sources */,
92FF041923AA0B7100AC97F6 /* ShapeQuantizedMaxPool.cpp in Sources */,
92FF038A23AA0B5A00AC97F6 /* CPURange.cpp in Sources */,
CE125CC92A52BF6B003698C9 /* MNNBilinearLineC8.S in Sources */,
92FF03A123AA0B5A00AC97F6 /* Int8FunctionsOpt.cpp in Sources */,
92FF026523AA0B5A00AC97F6 /* CPUQuantizedAvgPool.cpp in Sources */,
92FF029423AA0B5A00AC97F6 /* CPUMatMul.cpp in Sources */,
Expand Down Expand Up @@ -3555,7 +3556,6 @@
482BFBD028351BA1009210E4 /* AllShader.cpp in Sources */,
92FF04BA23AA0BFB00AC97F6 /* WrapExecution.cpp in Sources */,
11A01A06258785EA00745FA7 /* MNNVectorTop1Int32.S in Sources */,
CEE9B9542A3AA4C4006438F2 /* MNNBilinearLineC16.S in Sources */,
48FB9DC124A8445A008E1A2D /* MNNAxByClampBroadcastC4.S in Sources */,
EBD4842F2485FF660083CE95 /* Arm82Interp.cpp in Sources */,
4819FB3B24C69E680050BD09 /* GeometrySpatialProduct.cpp in Sources */,
Expand Down
14 changes: 12 additions & 2 deletions pymnn/src/util.h
Original file line number Diff line number Diff line change
Expand Up @@ -107,13 +107,23 @@ inline int64_t unpackLong(PyObject* obj) {
}
return (int64_t)value;
}
inline double unpackDoubleOrLong(PyObject* obj) {
if (PyLong_Check(obj)
#if PY_MAJOR_VERSION < 3
|| PyInt_Check(obj)
#endif
) {
return static_cast<float>(unpackLong(obj));
}
return unpackDouble(obj);
}
inline void store_scalar(void* data, int dtype, PyObject* obj) {
switch (dtype) {
case 4: *(uint8_t*)data = (uint8_t)unpackLong(obj); break;
case 3: *(int32_t*)data = (int32_t)unpackLong(obj); break;
case 9: *(int64_t*)data = unpackLong(obj); break;
case 1: *(float*)data = (float)unpackDouble(obj); break;
case 2: *(double*)data = (double)unpackDouble(obj); break;
case 1: *(float*)data = (float)unpackDoubleOrLong(obj); break;
case 2: *(double*)data = (double)unpackDoubleOrLong(obj); break;
case 6: *(int8_t*)data = (int8_t)unpackLong(obj); break;
default: PyMNN_ERROR_LOG("store_scalar: invalid type");
}
Expand Down
16 changes: 8 additions & 8 deletions source/backend/cpu/BinaryUtils.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -330,7 +330,7 @@ void execute(void* outputRaw, const void* inputRaw0, const void* inputRaw1, int
}

template<typename Tin, typename Tout, typename Func>
void executeInt8(int8_t* outputRaw, const int8_t* inputRaw0, const int8_t* inputRaw1, const float* inputScale0, const float* inputScale1, const float* outputScale, int elementSize, int needBroadcast) {
void executeInt8 (int8_t* outputRaw, const int8_t* inputRaw0, const int8_t* inputRaw1, ssize_t* inputScalesInt32, float* inputScalesFp32, const int8_t* inputOffset0, const int8_t* inputOffset1, const int8_t* outputOffset, size_t elementSize, size_t needBroadcast) {
Func f;
int size = elementSize;
#ifdef MNN_USE_NEON
Expand All @@ -355,19 +355,19 @@ void executeInt8(int8_t* outputRaw, const int8_t* inputRaw0, const int8_t* input
#endif
for (int i = 0; i < size; ++i) {
if (needBroadcast == 0) {
inp0 = (inputData0[0]- zeroPoint) * inputScale0[0];
inp1 = (inputData1[i]- zeroPoint) * inputScale1[0];
inp0 = (inputData0[0]- zeroPoint - inputOffset0[0]) * inputScalesFp32[0];
inp1 = (inputData1[i]- zeroPoint - inputOffset1[0]) * inputScalesFp32[1];
output = f(inp0, inp1);
} else if (needBroadcast == 1) {
inp0 = (inputData0[i] - zeroPoint) * inputScale0[0];
inp1 = (inputData1[0] - zeroPoint) * inputScale1[0];
inp0 = (inputData0[i] - zeroPoint - inputOffset0[0]) * inputScalesFp32[0];
inp1 = (inputData1[0] - zeroPoint - inputOffset1[0]) * inputScalesFp32[1];
output = f(inp0, inp1);
} else {
inp0 = (inputData0[i] - zeroPoint) * inputScale0[0];
inp1 = (inputData1[i] - zeroPoint) * inputScale1[0];
inp0 = (inputData0[i] - zeroPoint - inputOffset0[0]) * inputScalesFp32[0];
inp1 = (inputData1[i] - zeroPoint - inputOffset1[0]) * inputScalesFp32[1];
output = f(inp0, inp1);
}
int value = (int)roundf(output * outputScale[0]) + zeroPoint;
int value = (int)roundf(output * inputScalesFp32[2]) + zeroPoint + outputOffset[0];
if (value > maxValue) {
value = maxValue;
}
Expand Down
43 changes: 20 additions & 23 deletions source/backend/cpu/CPUBinaryInt8.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -16,8 +16,6 @@
#include "BinaryUtils.hpp"
#include "math/Vec.hpp"

using Vec16 = MNN::Math::Vec<int8_t, 16>;

namespace MNN {

ErrorCode CPUBinaryInt8::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
Expand All @@ -37,22 +35,24 @@ ErrorCode CPUBinaryInt8::onResize(const std::vector<Tensor*>& inputs, const std:

auto core = static_cast<CPUBackend*>(backend())->functions();

mInputQuant0.resize(core->pack); // prepare for arm neon. float32x4
mInputQuant1.resize(core->pack);
mOutputQuant.resize(core->pack);
std::fill(mInputQuant0.begin(), mInputQuant0.end(), TensorUtils::getDescribe(inputs[0])->quantAttr->scale);
std::fill(mInputQuant1.begin(), mInputQuant1.end(), TensorUtils::getDescribe(inputs[1])->quantAttr->scale);
mInputOffset0.resize(1);
mInputOffset1.resize(1);
mOutputOffset.resize(1);
mQuantScalesInt32.resize(2); // When use int32 scales computing, output scale is needless.
mQuantScalesFp32.resize(3);
mQuantScalesInt32[0] = TensorUtils::getDescribe(inputs[0])->quantAttr->scale * (1 << 16);
mQuantScalesInt32[1] = TensorUtils::getDescribe(inputs[1])->quantAttr->scale * (1 << 16);
mQuantScalesFp32[0] = TensorUtils::getDescribe(inputs[0])->quantAttr->scale;
mQuantScalesFp32[1] = TensorUtils::getDescribe(inputs[1])->quantAttr->scale;
if (TensorUtils::getDescribe(outputs[0])->quantAttr->scale != 0) {
std::fill(mOutputQuant.begin(), mOutputQuant.end(), 1 / TensorUtils::getDescribe(outputs[0])->quantAttr->scale);
mQuantScalesFp32[2] = 1 / TensorUtils::getDescribe(outputs[0])->quantAttr->scale;
} else {
std::fill(mOutputQuant.begin(), mOutputQuant.end(), 0);
mQuantScalesFp32[2] = 0;
}

mInputOffset0[0] = (int8_t)TensorUtils::getDescribe(inputs[0])->quantAttr->zero;
mInputOffset1[0] = (int8_t)TensorUtils::getDescribe(inputs[1])->quantAttr->zero;
mOutputOffset[0] = (int8_t)TensorUtils::getDescribe(outputs[0])->quantAttr->zero;

if(mActivationType == 1 && outputs[0]->getType().code == halide_type_float) {
mActivationExe.reset(new CPURelu(backend(), 0.0));
mActivationExe->onResize(outputs, outputs);
}
return NO_ERROR;
}

Expand All @@ -79,27 +79,24 @@ ErrorCode CPUBinaryInt8::onExecute(const std::vector<Tensor*>& inputs, const std
if (realSize > 0) {
auto inp0 = input0Ptr + start * inpBytes;
auto inp1 = input1Ptr + start * inpBytes;
auto scale0 = mInputQuant0.data() + start;
auto scale1 = mInputQuant1.data() + start;
auto scaleDst = mOutputQuant.data() + start;
auto offset0 = mInputOffset0.data();
auto offset1 = mInputOffset1.data();
auto offsetDst = mOutputOffset.data();
if (mNeedBroadcastIndex == 0) {
inp0 = input0Ptr;
} else if (mNeedBroadcastIndex == 1) {
inp1 = input1Ptr;
}
auto out = outputPtr + start * outBytes;
#ifdef MNN_USE_NEON
mProc(out, inp0, inp1, scale0, scale1, scaleDst, realSize / 4, mNeedBroadcastIndex);
mProc(out, inp0, inp1, mQuantScalesInt32.data(), mQuantScalesFp32.data(), offset0, offset1, offsetDst, realSize / 4, mNeedBroadcastIndex);
#else
mProc(out, inp0, inp1, scale0, scale1, scaleDst, realSize, mNeedBroadcastIndex);
mProc(out, inp0, inp1, mQuantScalesInt32.data(), mQuantScalesFp32.data(), offset0, offset1, offsetDst, realSize, mNeedBroadcastIndex);
#endif
}
}
MNN_CONCURRENCY_END();

if(mActivationType == 1 && output->getType().code == halide_type_float) {
mActivationExe->onExecute(outputs, outputs);;
}

return NO_ERROR;
}

Expand Down
8 changes: 5 additions & 3 deletions source/backend/cpu/CPUBinaryInt8.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -31,9 +31,11 @@ class CPUBinaryInt8 : public Execution {
int mTotalSize;
int mActivationType = 0;
std::shared_ptr<Execution> mActivationExe;
std::vector<float> mInputQuant0;
std::vector<float> mInputQuant1;
std::vector<float> mOutputQuant;
std::vector<ssize_t> mQuantScalesInt32; // input0 and input1
std::vector<float> mQuantScalesFp32; // input0, input1 and output
std::vector<int8_t> mInputOffset0;
std::vector<int8_t> mInputOffset1;
std::vector<int8_t> mOutputOffset;
};
} // namespace MNN
#endif /* CPUBinary_hpp */
Loading