Skip to content

alvisxp/Point-Cloud-Segmentation-on-KITTI

Repository files navigation

Point Cloud Segmentation using PointNet

This repo contains the implementation of the PointNet model for Semantic Segmentation of LiDAR scans on the KITTI dataset.

Contents

Requirements

pip install opencv-python numpy pandas torch torchvision h5py redis matplotlib pyyaml open3d tqdm 

Demo

  • Set the path of the environment variable KITTI_ROOT to the path of your dataset
python viewpoints.py

Dataset

  • Dataset used for this project is the KITTI Dataset with KITTI Odometry Benchmark Velodyne Point Clouds, Calibration data, Color RGB Dataset and SemanticKITTI label data.
  • Ensure the file structure is similar to this:
.
└── Dataset/
    └── Sequences/
        ├── 00/
        │   ├── Velodyne/
        │   │   ├── 000000.bin
        │   │   └── .
        │   ├── labels/
        │   │   ├── 000000.label
        │   │   └── .
        │   ├── image_2/
        │   │   ├── 000000.png
        │   │   └── .
        │   ├── image_3 /
        │   │   └── 000000.png
        │   ├── calib.txt
        │   ├── poses.txt
        │   └── time.txt
        ├── 01
        ├── .
        ├── .
        ├── .
        └── 21

About

semantic segmentation of point clouds on the KITTI dataset

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published