This repo contains the implementation of the PointNet model for Semantic Segmentation of LiDAR scans on the KITTI dataset.
pip install opencv-python numpy pandas torch torchvision h5py redis matplotlib pyyaml open3d tqdm
- Set the path of the environment variable
KITTI_ROOT
to the path of your dataset
python viewpoints.py
- Dataset used for this project is the KITTI Dataset with KITTI Odometry Benchmark Velodyne Point Clouds, Calibration data, Color RGB Dataset and SemanticKITTI label data.
- Ensure the file structure is similar to this:
.
└── Dataset/
└── Sequences/
├── 00/
│ ├── Velodyne/
│ │ ├── 000000.bin
│ │ └── .
│ ├── labels/
│ │ ├── 000000.label
│ │ └── .
│ ├── image_2/
│ │ ├── 000000.png
│ │ └── .
│ ├── image_3 /
│ │ └── 000000.png
│ ├── calib.txt
│ ├── poses.txt
│ └── time.txt
├── 01
├── .
├── .
├── .
└── 21