-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
executable file
·463 lines (300 loc) · 12.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
#!/usr/bin/env python
"""
@Author: Anshul Paigwar
@email: p.anshul6@gmail.com
For more information on python-pcl check following links:
Git Hub repository:
https://github.com/strawlab/python-pcl
Check the examples and tests folder for sample coordinates
API documentation:
http://nlesc.github.io/python-pcl/
documentation is incomplete there are more available funtions
Udacity Nanodegree perception exercises for practice
https://github.com/udacity/RoboND-Perception-Exercises
check the documentation for pcl_helper.py
"""
from __future__ import print_function
# Ros imports:
# import rospy
import math
import sys
# from sensor_msgs.msg import PointCloud2
# import std_msgs.msg
# import sensor_msgs.point_cloud2 as pcl2
import argparse
import random
import os
import shutil
import time
import numpy as np
import ipdb as pdb
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
import matplotlib.pyplot as plt
from torchviz import make_dot
import ipdb as pdb
# import pcl
# from tools.pcl_helper import *
from tools.acfr_dataset import acfr_dataset, get_data_loaders
import tools.utils as utils
from model import PointWiseConvNET
use_cuda = torch.cuda.is_available()
if use_cuda:
print('setting gpu on gpu_id: 0') #TODO: find the actual gpu id being used
parser = argparse.ArgumentParser()
# specify data and datapath
parser.add_argument('--dataset', default='modelnet40_pcl', help='modelnet40_pcl | ?? ')
parser.add_argument('--data_dir', default='/home/anshul/inria_thesis/datasets/Acfr/sydney-urban-objects-dataset/objects/', help='path to dataset')
parser.add_argument('--batchSize', type=int, default=32, help='input batch size')
parser.add_argument('--lr', '--learning-rate', default=20, type=float, help='initial learning rate')
parser.add_argument('--print-freq', '-p', default=50, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
parser.add_argument('-s', '--save_checkpoints', dest='save_checkpoints', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--epochs', default=90, type=int,
help='number of total epochs to run')
parser.add_argument('--num_glimpses', default=6, type=int,
help='number of total epochs to run')
parser.add_argument('--start_epoch', default=0, type=int,
help='number epochs to start from')
parser.add_argument('--clip', type=float, default=0.25,
help='gradient clipping')
args = parser.parse_args()
data_dir='/home/anshul/inria_thesis/datasets/Acfr/sydney-urban-objects-dataset/objects/'
train_loader, valid_loader = get_data_loaders(data_dir)
model = PointWiseConvNET(N = 2048, num_clases = 10)
if use_cuda:
model.cuda()
optimizer = optim.SGD(model.parameters(), lr=0.01)
# optimizer = optimizer = optim.Adam(model.parameters(), lr = 0.01)
criterion = nn.CrossEntropyLoss().cuda()
# criterion = nn.NLLLoss()
# criterion = nn.MultiLabelSoftMarginLoss()
# pdb.set_trace()
def train(epoch, subsample_points = True):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for batch_idx, (data, labels) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
# print("batch_idx",batch_idx)
B = data.shape[0] # Batch size
N = data.shape[1] # Num of points in PointCloud
# attributes is something thats gonna pass from one layer to another along with the point co-ordinates
attributes = torch.ones(B,N,1) #(B,N,inputchannel)
if use_cuda:
labels, attributes, data= labels.cuda(), attributes.cuda(), data.cuda()
labels, attributes = Variable(labels), Variable(attributes)
labels = labels.view(labels.size(0))
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
output = model(data,attributes) #output.size = (B,classes)
# print("forward_pass_time", time.time() - end)
loss = criterion(output,labels.long())
# measure accuracy and record loss
prec1, prec5 = accuracy(output, labels, topk=(1, 5))
losses.update(loss.item(), B)
top1.update(prec1[0], B)
top5.update(prec5[0], B)
# print("loss_time", time.time() - end)
loss.backward()
# print("backward time", time.time() - end)
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if batch_idx % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, batch_idx, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5))
def validate(subsample_points = True):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
for batch_idx, (data, labels) in enumerate(valid_loader):
B = data.shape[0] # Batch size
N = data.shape[1] # Num of points in PointCloud
# attributes is something thats gonna pass from one layer to another along with the point co-ordinates
attributes = torch.ones(B,N,1) #(B,N,inputchannel)
# attributes = data
# print("atrributes shape",attributes.size)
if use_cuda:
labels, attributes, data= labels.cuda(), attributes.cuda(), data.cuda()
labels, attributes = Variable(labels), Variable(attributes)
labels = labels.view(labels.size(0))
# zero the parameter gradients
optimizer.zero_grad()
# forward
output = model(data,attributes) #output.size = (B,classes)
# print("forward_pass_time", time.time() - end)
loss = criterion(output,labels.long())
# measure accuracy and record loss
prec1, prec5 = accuracy(output, labels, topk=(1, 5))
losses.update(loss.item(), B)
top1.update(prec1[0], B)
top5.update(prec5[0], B)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if batch_idx % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
batch_idx, len(valid_loader), batch_time=batch_time, loss=losses,
top1=top1, top5=top5))
print(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return top1.avg
best_prec1 = 0
def main():
global args, best_prec1
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
# args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
if args.evaluate:
validate(val_loader, model, criterion)
return
for epoch in range(args.epochs):
# adjust_learning_rate(optimizer, epoch)
train(epoch)
# evaluate on validation set
prec1 = validate()
# if (prec1 < best_prec1):
# adjust_learning_rate2(optimizer)
if args.save_checkpoints:
# remember best prec@1 and save checkpoint
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'optimizer' : optimizer.state_dict(),
}, is_best)
'''
Save the model for later
'''
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'model_best.pth.tar')
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr * (0.1 ** (epoch // 30))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def adjust_learning_rate2(optimizer):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = float(args.lr) / 4.0
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# TODO: Repair the accuracy function
def accuracy(output, target,topk=(1,)):
"""Computes the precision@k for the specified values of k"""
target = target.view(target.size(0)).long()
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def cal_accuracy(output, target):
target = target.view(target.size(0)).long()
with torch.no_grad():
batch_size = target.size(0)
_, predicted = torch.max(outputs.data, 1)
correct = (predicted == target).sum().item()
return correct * 100.0 / batch_size
def convert_image_np(inp):
"""Convert a Tensor to numpy image."""
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
return inp
def visualize(data, title):
input_tensor = data.cpu()
in_grid = convert_image_np(
torchvision.utils.make_grid(input_tensor))
# Plot the results side-by-side
plt.imshow(in_grid)
plt.title(title)
plt.show()
def visualize_stn():
with torch.no_grad():
# Get a batch of training data
data = next(iter(test_loader))[0].to(device)
input_tensor = data.cpu()
transformed_input_tensor = model.stn(data).cpu()
in_grid = convert_image_np(
torchvision.utils.make_grid(input_tensor))
out_grid = convert_image_np(
torchvision.utils.make_grid(transformed_input_tensor))
# Plot the results side-by-side
f, axarr = plt.subplots(1, 2)
axarr[0].imshow(in_grid)
axarr[0].set_title('Dataset Images')
axarr[1].imshow(out_grid)
axarr[1].set_title('Transformed Images')
if __name__ == '__main__':
main()