-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat(function): add greatest function (#12474)
* feat(function): add greatest function This match the Spark implementation for greatest: https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.functions.greatest.html * remove unused * fix finding common supertype in greatest * allow single argument for greatest * assert that both array have the same length * use logical null count * remove unused import * add docs * add greatest slt tests * add greatest slt tests * fix merge conflicts * add docs * revert manual docs changes * Update based on cr * fix lint * run fmt * run clippy * Uppdated docs using `./dev/update_function_docs.sh`
- Loading branch information
Showing
4 changed files
with
502 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,272 @@ | ||
// Licensed to the Apache Software Foundation (ASF) under one | ||
// or more contributor license agreements. See the NOTICE file | ||
// distributed with this work for additional information | ||
// regarding copyright ownership. The ASF licenses this file | ||
// to you under the Apache License, Version 2.0 (the | ||
// "License"); you may not use this file except in compliance | ||
// with the License. You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, | ||
// software distributed under the License is distributed on an | ||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
// KIND, either express or implied. See the License for the | ||
// specific language governing permissions and limitations | ||
// under the License. | ||
|
||
use arrow::array::{make_comparator, Array, ArrayRef, BooleanArray}; | ||
use arrow::compute::kernels::cmp; | ||
use arrow::compute::kernels::zip::zip; | ||
use arrow::compute::SortOptions; | ||
use arrow::datatypes::DataType; | ||
use arrow_buffer::BooleanBuffer; | ||
use datafusion_common::{exec_err, plan_err, Result, ScalarValue}; | ||
use datafusion_expr::binary::type_union_resolution; | ||
use datafusion_expr::scalar_doc_sections::DOC_SECTION_CONDITIONAL; | ||
use datafusion_expr::{ColumnarValue, Documentation}; | ||
use datafusion_expr::{ScalarUDFImpl, Signature, Volatility}; | ||
use std::any::Any; | ||
use std::sync::{Arc, OnceLock}; | ||
|
||
const SORT_OPTIONS: SortOptions = SortOptions { | ||
// We want greatest first | ||
descending: false, | ||
|
||
// NULL will be less than any other value | ||
nulls_first: true, | ||
}; | ||
|
||
#[derive(Debug)] | ||
pub struct GreatestFunc { | ||
signature: Signature, | ||
} | ||
|
||
impl Default for GreatestFunc { | ||
fn default() -> Self { | ||
GreatestFunc::new() | ||
} | ||
} | ||
|
||
impl GreatestFunc { | ||
pub fn new() -> Self { | ||
Self { | ||
signature: Signature::user_defined(Volatility::Immutable), | ||
} | ||
} | ||
} | ||
|
||
fn get_logical_null_count(arr: &dyn Array) -> usize { | ||
arr.logical_nulls() | ||
.map(|n| n.null_count()) | ||
.unwrap_or_default() | ||
} | ||
|
||
/// Return boolean array where `arr[i] = lhs[i] >= rhs[i]` for all i, where `arr` is the result array | ||
/// Nulls are always considered smaller than any other value | ||
fn get_larger(lhs: &dyn Array, rhs: &dyn Array) -> Result<BooleanArray> { | ||
// Fast path: | ||
// If both arrays are not nested, have the same length and no nulls, we can use the faster vectorised kernel | ||
// - If both arrays are not nested: Nested types, such as lists, are not supported as the null semantics are not well-defined. | ||
// - both array does not have any nulls: cmp::gt_eq will return null if any of the input is null while we want to return false in that case | ||
if !lhs.data_type().is_nested() | ||
&& get_logical_null_count(lhs) == 0 | ||
&& get_logical_null_count(rhs) == 0 | ||
{ | ||
return cmp::gt_eq(&lhs, &rhs).map_err(|e| e.into()); | ||
} | ||
|
||
let cmp = make_comparator(lhs, rhs, SORT_OPTIONS)?; | ||
|
||
if lhs.len() != rhs.len() { | ||
return exec_err!( | ||
"All arrays should have the same length for greatest comparison" | ||
); | ||
} | ||
|
||
let values = BooleanBuffer::collect_bool(lhs.len(), |i| cmp(i, i).is_ge()); | ||
|
||
// No nulls as we only want to keep the values that are larger, its either true or false | ||
Ok(BooleanArray::new(values, None)) | ||
} | ||
|
||
/// Return array where the largest value at each index is kept | ||
fn keep_larger(lhs: ArrayRef, rhs: ArrayRef) -> Result<ArrayRef> { | ||
// True for values that we should keep from the left array | ||
let keep_lhs = get_larger(lhs.as_ref(), rhs.as_ref())?; | ||
|
||
let larger = zip(&keep_lhs, &lhs, &rhs)?; | ||
|
||
Ok(larger) | ||
} | ||
|
||
fn keep_larger_scalar<'a>( | ||
lhs: &'a ScalarValue, | ||
rhs: &'a ScalarValue, | ||
) -> Result<&'a ScalarValue> { | ||
if !lhs.data_type().is_nested() { | ||
return if lhs >= rhs { Ok(lhs) } else { Ok(rhs) }; | ||
} | ||
|
||
// If complex type we can't compare directly as we want null values to be smaller | ||
let cmp = make_comparator( | ||
lhs.to_array()?.as_ref(), | ||
rhs.to_array()?.as_ref(), | ||
SORT_OPTIONS, | ||
)?; | ||
|
||
if cmp(0, 0).is_ge() { | ||
Ok(lhs) | ||
} else { | ||
Ok(rhs) | ||
} | ||
} | ||
|
||
fn find_coerced_type(data_types: &[DataType]) -> Result<DataType> { | ||
if data_types.is_empty() { | ||
plan_err!("greatest was called without any arguments. It requires at least 1.") | ||
} else if let Some(coerced_type) = type_union_resolution(data_types) { | ||
Ok(coerced_type) | ||
} else { | ||
plan_err!("Cannot find a common type for arguments") | ||
} | ||
} | ||
|
||
impl ScalarUDFImpl for GreatestFunc { | ||
fn as_any(&self) -> &dyn Any { | ||
self | ||
} | ||
|
||
fn name(&self) -> &str { | ||
"greatest" | ||
} | ||
|
||
fn signature(&self) -> &Signature { | ||
&self.signature | ||
} | ||
|
||
fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> { | ||
Ok(arg_types[0].clone()) | ||
} | ||
|
||
fn invoke(&self, args: &[ColumnarValue]) -> Result<ColumnarValue> { | ||
if args.is_empty() { | ||
return exec_err!( | ||
"greatest was called with no arguments. It requires at least 1." | ||
); | ||
} | ||
|
||
// Some engines (e.g. SQL Server) allow greatest with single arg, it's a noop | ||
if args.len() == 1 { | ||
return Ok(args[0].clone()); | ||
} | ||
|
||
// Split to scalars and arrays for later optimization | ||
let (scalars, arrays): (Vec<_>, Vec<_>) = args.iter().partition(|x| match x { | ||
ColumnarValue::Scalar(_) => true, | ||
ColumnarValue::Array(_) => false, | ||
}); | ||
|
||
let mut arrays_iter = arrays.iter().map(|x| match x { | ||
ColumnarValue::Array(a) => a, | ||
_ => unreachable!(), | ||
}); | ||
|
||
let first_array = arrays_iter.next(); | ||
|
||
let mut largest: ArrayRef; | ||
|
||
// Optimization: merge all scalars into one to avoid recomputing | ||
if !scalars.is_empty() { | ||
let mut scalars_iter = scalars.iter().map(|x| match x { | ||
ColumnarValue::Scalar(s) => s, | ||
_ => unreachable!(), | ||
}); | ||
|
||
// We have at least one scalar | ||
let mut largest_scalar = scalars_iter.next().unwrap(); | ||
|
||
for scalar in scalars_iter { | ||
largest_scalar = keep_larger_scalar(largest_scalar, scalar)?; | ||
} | ||
|
||
// If we only have scalars, return the largest one | ||
if arrays.is_empty() { | ||
return Ok(ColumnarValue::Scalar(largest_scalar.clone())); | ||
} | ||
|
||
// We have at least one array | ||
let first_array = first_array.unwrap(); | ||
|
||
// Start with the largest value | ||
largest = keep_larger( | ||
Arc::clone(first_array), | ||
largest_scalar.to_array_of_size(first_array.len())?, | ||
)?; | ||
} else { | ||
// If we only have arrays, start with the first array | ||
// (We must have at least one array) | ||
largest = Arc::clone(first_array.unwrap()); | ||
} | ||
|
||
for array in arrays_iter { | ||
largest = keep_larger(Arc::clone(array), largest)?; | ||
} | ||
|
||
Ok(ColumnarValue::Array(largest)) | ||
} | ||
|
||
fn coerce_types(&self, arg_types: &[DataType]) -> Result<Vec<DataType>> { | ||
let coerced_type = find_coerced_type(arg_types)?; | ||
|
||
Ok(vec![coerced_type; arg_types.len()]) | ||
} | ||
|
||
fn documentation(&self) -> Option<&Documentation> { | ||
Some(get_greatest_doc()) | ||
} | ||
} | ||
static DOCUMENTATION: OnceLock<Documentation> = OnceLock::new(); | ||
|
||
fn get_greatest_doc() -> &'static Documentation { | ||
DOCUMENTATION.get_or_init(|| { | ||
Documentation::builder() | ||
.with_doc_section(DOC_SECTION_CONDITIONAL) | ||
.with_description("Returns the greatest value in a list of expressions. Returns _null_ if all expressions are _null_.") | ||
.with_syntax_example("greatest(expression1[, ..., expression_n])") | ||
.with_sql_example(r#"```sql | ||
> select greatest(4, 7, 5); | ||
+---------------------------+ | ||
| greatest(4,7,5) | | ||
+---------------------------+ | ||
| 7 | | ||
+---------------------------+ | ||
```"#, | ||
) | ||
.with_argument( | ||
"expression1, expression_n", | ||
"Expressions to compare and return the greatest value.. Can be a constant, column, or function, and any combination of arithmetic operators. Pass as many expression arguments as necessary." | ||
) | ||
.build() | ||
.unwrap() | ||
}) | ||
} | ||
|
||
#[cfg(test)] | ||
mod test { | ||
use crate::core; | ||
use arrow::datatypes::DataType; | ||
use datafusion_expr::ScalarUDFImpl; | ||
|
||
#[test] | ||
fn test_greatest_return_types_without_common_supertype_in_arg_type() { | ||
let greatest = core::greatest::GreatestFunc::new(); | ||
let return_type = greatest | ||
.coerce_types(&[DataType::Decimal128(10, 3), DataType::Decimal128(10, 4)]) | ||
.unwrap(); | ||
assert_eq!( | ||
return_type, | ||
vec![DataType::Decimal128(11, 4), DataType::Decimal128(11, 4)] | ||
); | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.