Skip to content

Commit

Permalink
Add the implementation for the hematologic disease model
Browse files Browse the repository at this point in the history
  • Loading branch information
moazreyad committed Dec 3, 2024
1 parent ce3a1ae commit 23b82c1
Showing 1 changed file with 124 additions and 0 deletions.
124 changes: 124 additions & 0 deletions examples/healthcare/models/hematologic_net.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,124 @@
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from singa import layer
from singa import model
from singa import tensor
from singa import opt
from singa import device

import numpy as np


np_dtype = {"float16": np.float16, "float32": np.float32}

singa_dtype = {"float16": tensor.float16, "float32": tensor.float32}


class CNNModel(model.Model):
def __init__(self, num_classes):
super(CNNModel, self).__init__()
self.input_size = 28
self.dimension = 4
self.num_classes = num_classes

self.layer1 = layer.Conv2d(16, kernel_size=3, activation="RELU")
self.bn1 = layer.BatchNorm2d()
self.layer2 = layer.Conv2d(16, kernel_size=3, activation="RELU")
self.bn2 = layer.BatchNorm2d()
self.pooling2 = layer.MaxPool2d(kernel_size=2, stride=2)
self.layer3 = layer.Conv2d(64, kernel_size=3, activation="RELU")
self.bn3 = layer.BatchNorm2d()
self.layer4 = layer.Conv2d(64, kernel_size=3, activation="RELU")
self.bn4 = layer.BatchNorm2d()
self.layer5 = layer.Conv2d(64, kernel_size=3, padding=1, activation="RELU")
self.bn5 = layer.BatchNorm2d()
self.pooling5 = layer.MaxPool2d(kernel_size=2, stride=2)

self.flatten = layer.Flatten()

self.linear1 = layer.Linear(128)
self.linear2 = layer.Linear(128)
self.linear3 = layer.Linear(self.num_classes)

self.relu = layer.ReLU()

self.softmax_cross_entropy = layer.SoftMaxCrossEntropy()
self.dropout = layer.Dropout(ratio=0.3)

def forward(self, x):
x = self.layer1(x)
x = self.bn1(x)
x = self.layer2(x)
x = self.bn2(x)
x = self.pooling2(x)

x = self.layer3(x)
x = self.bn3(x)
x = self.layer4(x)
x = self.bn4(x)
x = self.layer5(x)
x = self.bn5(x)
x = self.pooling5(x)
x = self.flatten(x)
x = self.linear1(x)
x = self.relu(x)
x = self.linear2(x)
x = self.relu(x)
x = self.linear3(x)
return x

def set_optimizer(self, optimizer):
self.optimizer = optimizer

def train_one_batch(self, x, y, dist_option, spars):
out = self.forward(x)
loss = self.softmax_cross_entropy(out, y)

if dist_option == 'plain':
self.optimizer(loss)
elif dist_option == 'half':
self.optimizer.backward_and_update_half(loss)
elif dist_option == 'partialUpdate':
self.optimizer.backward_and_partial_update(loss)
elif dist_option == 'sparseTopK':
self.optimizer.backward_and_sparse_update(loss,
topK=True,
spars=spars)
elif dist_option == 'sparseThreshold':
self.optimizer.backward_and_sparse_update(loss,
topK=False,
spars=spars)
return out, loss


def create_model(**kwargs):
"""Constructs a CNN model.
Args:
pretrained (bool): If True, returns a pre-trained model.
Returns:
The created CNN model.
"""
model = CNNModel(**kwargs)

return model


__all__ = ['CNNModel', 'create_model']

0 comments on commit 23b82c1

Please sign in to comment.