-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add autograd implementation for dynamic model creation
- Loading branch information
zmeihui
committed
Sep 11, 2023
1 parent
5df0cec
commit 41e260d
Showing
1 changed file
with
137 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,137 @@ | ||
# | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# | ||
|
||
from singa import tensor | ||
from singa.tensor import Tensor | ||
from singa import autograd | ||
from singa import opt | ||
import numpy as np | ||
from singa import device | ||
import argparse | ||
|
||
np_dtype = {"float16": np.float16, "float32": np.float32} | ||
|
||
singa_dtype = {"float16": tensor.float16, "float32": tensor.float32} | ||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument('-p', | ||
choices=['float32', 'float16'], | ||
default='float32', | ||
dest='precision') | ||
parser.add_argument('-m', | ||
'--max-epoch', | ||
default=1001, | ||
type=int, | ||
help='maximum epochs', | ||
dest='max_epoch') | ||
args = parser.parse_args() | ||
|
||
np.random.seed(0) | ||
|
||
autograd.training = True | ||
|
||
# prepare training data in numpy array | ||
|
||
# generate the boundary | ||
f = lambda x: (5 * x + 1) | ||
bd_x = np.linspace(-1.0, 1, 200) | ||
bd_y = f(bd_x) | ||
|
||
# generate the training data | ||
x = np.random.uniform(-1, 1, 400) | ||
y = f(x) + 2 * np.random.randn(len(x)) | ||
|
||
# convert training data to 2d space | ||
label = np.asarray([5 * a + 1 > b for (a, b) in zip(x, y)]) | ||
data = np.array([[a, b] for (a, b) in zip(x, y)], dtype=np.float32) | ||
|
||
def to_categorical(y, num_classes): | ||
""" | ||
Converts a class vector (integers) to binary class matrix. | ||
Args: | ||
y: class vector to be converted into a matrix | ||
(integers from 0 to num_classes). | ||
num_classes: total number of classes. | ||
Returns: | ||
A binary matrix representation of the input. | ||
""" | ||
y = np.array(y, dtype="int") | ||
n = y.shape[0] | ||
categorical = np.zeros((n, num_classes)) | ||
categorical[np.arange(n), y] = 1 | ||
return categorical | ||
|
||
label = to_categorical(label, 2).astype(np.float32) | ||
print("train_data_shape:", data.shape) | ||
print("train_label_shape:", label.shape) | ||
|
||
precision = singa_dtype[args.precision] | ||
np_precision = np_dtype[args.precision] | ||
|
||
dev = device.create_cuda_gpu() | ||
|
||
inputs = Tensor(data=data, device=dev) | ||
target = Tensor(data=label, device=dev) | ||
|
||
inputs = inputs.as_type(precision) | ||
target = target.as_type(tensor.int32) | ||
|
||
w0_np = np.random.normal(0, 0.1, (2, 3)).astype(np_precision) | ||
w0 = Tensor(data=w0_np, | ||
device=dev, | ||
dtype=precision, | ||
requires_grad=True, | ||
stores_grad=True) | ||
b0 = Tensor(shape=(3,), | ||
device=dev, | ||
dtype=precision, | ||
requires_grad=True, | ||
stores_grad=True) | ||
b0.set_value(0.0) | ||
|
||
w1_np = np.random.normal(0, 0.1, (3, 2)).astype(np_precision) | ||
w1 = Tensor(data=w1_np, | ||
device=dev, | ||
dtype=precision, | ||
requires_grad=True, | ||
stores_grad=True) | ||
b1 = Tensor(shape=(2,), | ||
device=dev, | ||
dtype=precision, | ||
requires_grad=True, | ||
stores_grad=True) | ||
b1.set_value(0.0) | ||
|
||
sgd = opt.SGD(0.05, 0.8) | ||
|
||
# training process | ||
for i in range(args.max_epoch): | ||
x = autograd.matmul(inputs, w0) | ||
x = autograd.add_bias(x, b0) | ||
x = autograd.relu(x) | ||
x = autograd.matmul(x, w1) | ||
x = autograd.add_bias(x, b1) | ||
loss = autograd.softmax_cross_entropy(x, target) | ||
sgd(loss) | ||
|
||
if i % 100 == 0: | ||
print("%d, training loss = " % i, tensor.to_numpy(loss)[0]) |