-
Notifications
You must be signed in to change notification settings - Fork 1.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add the implementation for the hematologic disease
- Loading branch information
Showing
1 changed file
with
270 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,270 @@ | ||
# | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# | ||
|
||
import json | ||
import os | ||
import time | ||
from glob import glob | ||
|
||
import numpy as np | ||
from PIL import Image | ||
from singa import device, layer, model, opt, tensor | ||
from tqdm import tqdm | ||
|
||
from transforms import Compose, Normalize, ToTensor | ||
|
||
np_dtype = {"float16": np.float16, "float32": np.float32} | ||
singa_dtype = {"float16": tensor.float16, "float32": tensor.float32} | ||
|
||
|
||
class ClassDataset(object): | ||
"""Fetch data from file and generate batches. | ||
Load data from folder as PIL.Images and convert them into batch array. | ||
Args: | ||
img_folder (Str): Folder path of the training/validation images. | ||
transforms (Transform): Preprocess transforms. | ||
""" | ||
def __init__(self, img_folder, transforms): | ||
super(ClassDataset, self).__init__() | ||
|
||
self.img_list = list() | ||
self.transforms = transforms | ||
|
||
classes = os.listdir(img_folder) | ||
for i in classes: | ||
images = glob(os.path.join(img_folder, i, "*")) | ||
for img in images: | ||
self.img_list.append((img, i)) | ||
|
||
def __len__(self) -> int: | ||
return len(self.img_list) | ||
|
||
def __getitem__(self, index: int): | ||
img_path, label_str = self.img_list[index] | ||
img = Image.open(img_path) | ||
img = self.transforms.forward(img) | ||
label = np.array(label_str, dtype=np.int32) | ||
|
||
return img, label | ||
|
||
def batchgenerator(self, indexes, batch_size, data_size): | ||
"""Generate batch arrays from transformed image list. | ||
Args: | ||
indexes (Sequence): current batch indexes list, e.g. [n, n + 1, ..., n + batch_size] | ||
batch_size (int): | ||
data_size (Tuple): input image size of shape (C, H, W) | ||
Return: | ||
batch_x (Numpy ndarray): batch array of input images (B, C, H, W) | ||
batch_y (Numpy ndarray): batch array of ground truth lables (B,) | ||
""" | ||
batch_x = np.zeros((batch_size,) + data_size) | ||
batch_y = np.zeros((batch_size,) + (1,), dtype=np.int32) | ||
for idx, i in enumerate(indexes): | ||
sample_x, sample_y = self.__getitem__(i) | ||
batch_x[idx, :, :, :] = sample_x | ||
batch_y[idx, :] = sample_y | ||
|
||
return batch_x, batch_y | ||
|
||
|
||
class CNNModel(model.Model): | ||
def __init__(self, num_classes): | ||
super(CNNModel, self).__init__() | ||
self.input_size = 28 | ||
self.dimension = 4 | ||
self.num_classes = num_classes | ||
|
||
self.layer1 = layer.Conv2d(16, kernel_size=3, activation="RELU") | ||
self.bn1 = layer.BatchNorm2d() | ||
self.layer2 = layer.Conv2d(16, kernel_size=3, activation="RELU") | ||
self.bn2 = layer.BatchNorm2d() | ||
self.pooling2 = layer.MaxPool2d(kernel_size=2, stride=2) | ||
self.layer3 = layer.Conv2d(64, kernel_size=3, activation="RELU") | ||
self.bn3 = layer.BatchNorm2d() | ||
self.layer4 = layer.Conv2d(64, kernel_size=3, activation="RELU") | ||
self.bn4 = layer.BatchNorm2d() | ||
self.layer5 = layer.Conv2d(64, kernel_size=3, padding=1, activation="RELU") | ||
self.bn5 = layer.BatchNorm2d() | ||
self.pooling5 = layer.MaxPool2d(kernel_size=2, stride=2) | ||
|
||
self.flatten = layer.Flatten() | ||
|
||
self.linear1 = layer.Linear(128) | ||
self.linear2 = layer.Linear(128) | ||
self.linear3 = layer.Linear(self.num_classes) | ||
|
||
self.relu = layer.ReLU() | ||
|
||
self.softmax_cross_entropy = layer.SoftMaxCrossEntropy() | ||
self.dropout = layer.Dropout(ratio=0.3) | ||
|
||
def forward(self, x): | ||
x = self.layer1(x) | ||
x = self.bn1(x) | ||
x = self.layer2(x) | ||
x = self.bn2(x) | ||
x = self.pooling2(x) | ||
|
||
x = self.layer3(x) | ||
x = self.bn3(x) | ||
x = self.layer4(x) | ||
x = self.bn4(x) | ||
x = self.layer5(x) | ||
x = self.bn5(x) | ||
x = self.pooling5(x) | ||
x = self.flatten(x) | ||
x = self.linear1(x) | ||
x = self.relu(x) | ||
x = self.linear2(x) | ||
x = self.relu(x) | ||
x = self.linear3(x) | ||
return x | ||
|
||
def set_optimizer(self, optimizer): | ||
self.optimizer = optimizer | ||
|
||
def train_one_batch(self, x, y, dist_option, spars): | ||
out = self.forward(x) | ||
loss = self.softmax_cross_entropy(out, y) | ||
|
||
if dist_option == 'plain': | ||
self.optimizer(loss) | ||
elif dist_option == 'half': | ||
self.optimizer.backward_and_update_half(loss) | ||
elif dist_option == 'partialUpdate': | ||
self.optimizer.backward_and_partial_update(loss) | ||
elif dist_option == 'sparseTopK': | ||
self.optimizer.backward_and_sparse_update(loss, | ||
topK=True, | ||
spars=spars) | ||
elif dist_option == 'sparseThreshold': | ||
self.optimizer.backward_and_sparse_update(loss, | ||
topK=False, | ||
spars=spars) | ||
return out, loss | ||
|
||
|
||
def accuracy(pred, target): | ||
"""Compute recall accuracy. | ||
Args: | ||
pred (Numpy ndarray): Prediction array, should be in shape (B, C) | ||
target (Numpy ndarray): Ground truth array, should be in shape (B, ) | ||
Return: | ||
correct (Float): Recall accuracy | ||
""" | ||
# y is network output to be compared with ground truth (int) | ||
y = np.argmax(pred, axis=1) | ||
a = (y[:,None]==target).sum() | ||
correct = np.array(a, "int").sum() | ||
return correct | ||
|
||
|
||
# Define pre-processing methods (transforms) | ||
transforms = Compose([ | ||
ToTensor(), | ||
Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | ||
]) | ||
|
||
# Dataset loading | ||
dataset_path = "./bloodmnist" | ||
train_path = os.path.join(dataset_path, "train") | ||
val_path = os.path.join(dataset_path, "val") | ||
cfg_path = os.path.join(dataset_path, "param.json") | ||
|
||
with open(cfg_path,'r') as load_f: | ||
num_class = json.load(load_f)["num_classes"] | ||
|
||
train_dataset = ClassDataset(train_path, transforms) | ||
val_dataset = ClassDataset(val_path, transforms) | ||
|
||
batch_size = 256 | ||
|
||
# Model configuration for CNN | ||
model = CNNModel(num_classes=num_class) | ||
criterion = layer.SoftMaxCrossEntropy() | ||
optimizer_ft = opt.Adam(lr=1e-3) | ||
|
||
# Start training | ||
dev = device.create_cpu_device() | ||
dev.SetRandSeed(0) | ||
np.random.seed(0) | ||
|
||
tx = tensor.Tensor( | ||
(batch_size, 3, model.input_size, model.input_size), dev, | ||
singa_dtype['float32']) | ||
ty = tensor.Tensor((batch_size,), dev, tensor.int32) | ||
|
||
num_train_batch = train_dataset.__len__() // batch_size | ||
num_val_batch = val_dataset.__len__() // batch_size | ||
idx = np.arange(train_dataset.__len__(), dtype=np.int32) | ||
|
||
model.set_optimizer(optimizer_ft) | ||
model.compile([tx], is_train=True, use_graph=False, sequential=False) | ||
dev.SetVerbosity(0) | ||
|
||
max_epoch = 100 | ||
for epoch in range(max_epoch): | ||
print(f'Epoch {epoch}:') | ||
|
||
start_time = time.time() | ||
|
||
train_correct = np.zeros(shape=[1], dtype=np.float32) | ||
test_correct = np.zeros(shape=[1], dtype=np.float32) | ||
train_loss = np.zeros(shape=[1], dtype=np.float32) | ||
|
||
# Training part | ||
model.train() | ||
for b in tqdm(range(num_train_batch)): | ||
# Extract batch from image list | ||
x, y = train_dataset.batchgenerator(idx[b * batch_size:(b + 1) * batch_size], | ||
batch_size=batch_size, data_size=(3, model.input_size, model.input_size)) | ||
x = x.astype(np_dtype['float32']) | ||
|
||
tx.copy_from_numpy(x) | ||
ty.copy_from_numpy(y) | ||
|
||
out, loss = model(tx, ty, dist_option="plain", spars=None) | ||
train_correct += accuracy(tensor.to_numpy(out), y) | ||
train_loss += tensor.to_numpy(loss)[0] | ||
print('Training loss = %f, training accuracy = %f' % | ||
(train_loss, train_correct / | ||
(num_train_batch * batch_size))) | ||
|
||
# Validation part | ||
model.eval() | ||
for b in tqdm(range(num_val_batch)): | ||
x, y = train_dataset.batchgenerator(idx[b * batch_size:(b + 1) * batch_size], | ||
batch_size=batch_size, data_size=(3, model.input_size, model.input_size)) | ||
x = x.astype(np_dtype['float32']) | ||
|
||
tx.copy_from_numpy(x) | ||
ty.copy_from_numpy(y) | ||
|
||
out = model(tx) | ||
test_correct += accuracy(tensor.to_numpy(out), y) | ||
|
||
print('Evaluation accuracy = %f, Elapsed Time = %fs' % | ||
(test_correct / (num_val_batch * batch_size), | ||
time.time() - start_time)) |