Skip to content

Commit

Permalink
Add implementations for the autograd resnet cifar-10
Browse files Browse the repository at this point in the history
Add implementations for the autograd resnet cifar-10
  • Loading branch information
GY-GitCode authored Jun 15, 2024
1 parent 0ee8cb3 commit edfac8f
Showing 1 changed file with 292 additions and 0 deletions.
292 changes: 292 additions & 0 deletions examples/cnn_ms/autograd/resnet_cifar10.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,292 @@
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#

try:
import pickle
except ImportError:
import cPickle as pickle

from singa import singa_wrap as singa
from singa import autograd
from singa import tensor
from singa import device
from singa import opt
from PIL import Image
import numpy as np
import os
import sys
import time


def load_dataset(filepath):
with open(filepath, 'rb') as fd:
try:
cifar10 = pickle.load(fd, encoding='latin1')
except TypeError:
cifar10 = pickle.load(fd)
image = cifar10['data'].astype(dtype=np.uint8)
image = image.reshape((-1, 3, 32, 32))
label = np.asarray(cifar10['labels'], dtype=np.uint8)
label = label.reshape(label.size, 1)
return image, label


def load_train_data(dir_path='cifar-10-batches-py', num_batches=5):
labels = []
batchsize = 10000
images = np.empty((num_batches * batchsize, 3, 32, 32), dtype=np.uint8)
for did in range(1, num_batches + 1):
fname_train_data = dir_path + "/data_batch_{}".format(did)
image, label = load_dataset(check_dataset_exist(fname_train_data))
images[(did - 1) * batchsize:did * batchsize] = image
labels.extend(label)
images = np.array(images, dtype=np.float32)
labels = np.array(labels, dtype=np.int32)
return images, labels


def load_test_data(dir_path='cifar-10-batches-py'):
images, labels = load_dataset(check_dataset_exist(dir_path + "/test_batch"))
return np.array(images, dtype=np.float32), np.array(labels, dtype=np.int32)


def check_dataset_exist(dirpath):
if not os.path.exists(dirpath):
print(
'Please download the cifar10 dataset using download_data.py (e.g. python ~/singa/examples/cifar10/download_data.py py)'
)
sys.exit(0)
return dirpath


def normalize_for_resnet(train_x, test_x):
mean = [0.4914, 0.4822, 0.4465]
std = [0.2023, 0.1994, 0.2010]
train_x /= 255
test_x /= 255
for ch in range(0, 2):
train_x[:, ch, :, :] -= mean[ch]
train_x[:, ch, :, :] /= std[ch]
test_x[:, ch, :, :] -= mean[ch]
test_x[:, ch, :, :] /= std[ch]
return train_x, test_x


def resize_dataset(x, IMG_SIZE):
num_data = x.shape[0]
dim = x.shape[1]
X = np.zeros(shape=(num_data, dim, IMG_SIZE, IMG_SIZE), dtype=np.float32)
for n in range(0, num_data):
for d in range(0, dim):
X[n, d, :, :] = np.array(Image.fromarray(x[n, d, :, :]).resize(
(IMG_SIZE, IMG_SIZE), Image.BILINEAR),
dtype=np.float32)
return X


def augmentation(x, batch_size):
xpad = np.pad(x, [[0, 0], [0, 0], [4, 4], [4, 4]], 'symmetric')
for data_num in range(0, batch_size):
offset = np.random.randint(8, size=2)
x[data_num, :, :, :] = xpad[data_num, :, offset[0]:offset[0] + 32,
offset[1]:offset[1] + 32]
if_flip = np.random.randint(2)
if (if_flip):
x[data_num, :, :, :] = x[data_num, :, :, ::-1]
return x


def accuracy(pred, target):
y = np.argmax(pred, axis=1)
t = np.argmax(target, axis=1)
a = y == t
return np.array(a, "int").sum()


def to_categorical(y, num_classes):
y = np.array(y, dtype="int")
n = y.shape[0]
categorical = np.zeros((n, num_classes))
for i in range(0, n):
categorical[i, y[i]] = 1
categorical = categorical.astype(np.float32)
return categorical


# Function to all reduce NUMPY accuracy and loss from multiple devices
def reduce_variable(variable, dist_opt, reducer):
reducer.copy_from_numpy(variable)
dist_opt.all_reduce(reducer.data)
dist_opt.wait()
output = tensor.to_numpy(reducer)
return output


# Function to sychronize SINGA TENSOR initial model parameters
def synchronize(tensor, dist_opt):
dist_opt.all_reduce(tensor.data)
dist_opt.wait()
tensor /= dist_opt.world_size


# Data partition
def data_partition(dataset_x, dataset_y, global_rank, world_size):
data_per_rank = dataset_x.shape[0] // world_size
idx_start = global_rank * data_per_rank
idx_end = (global_rank + 1) * data_per_rank
return dataset_x[idx_start:idx_end], dataset_y[idx_start:idx_end]


def train_cifar10(DIST=False,
local_rank=None,
world_size=None,
nccl_id=None,
partial_update=False):

# Define the hypermeters for the train_cifar10
sgd = opt.SGD(lr=0.005, momentum=0.9, weight_decay=1e-5)
max_epoch = 5
batch_size = 32

train_x, train_y = load_train_data()
test_x, test_y = load_test_data()
train_x, test_x = normalize_for_resnet(train_x, test_x)
IMG_SIZE = 224
num_classes = 10

if DIST:
# For distributed GPU training
sgd = opt.DistOpt(sgd,
nccl_id=nccl_id,
local_rank=local_rank,
world_size=world_size)
dev = device.create_cuda_gpu_on(sgd.local_rank)

# Dataset partition for distributed training
train_x, train_y = data_partition(train_x, train_y, sgd.global_rank,
sgd.world_size)
test_x, test_y = data_partition(test_x, test_y, sgd.global_rank,
sgd.world_size)
world_size = sgd.world_size
else:
# For single GPU
dev = device.create_cuda_gpu()
world_size = 1

from resnet import resnet50
model = resnet50(num_classes=num_classes)

tx = tensor.Tensor((batch_size, 3, IMG_SIZE, IMG_SIZE), dev, tensor.float32)
ty = tensor.Tensor((batch_size,), dev, tensor.int32)
num_train_batch = train_x.shape[0] // batch_size
num_test_batch = test_x.shape[0] // batch_size
idx = np.arange(train_x.shape[0], dtype=np.int32)

if DIST:
# Sychronize the initial parameters
autograd.training = True
x = np.random.randn(batch_size, 3, IMG_SIZE,
IMG_SIZE).astype(np.float32)
y = np.zeros(shape=(batch_size,), dtype=np.int32)
tx.copy_from_numpy(x)
ty.copy_from_numpy(y)
out = model(tx)
loss = autograd.softmax_cross_entropy(out, ty)
param = []
for p, _ in autograd.backward(loss):
synchronize(p, sgd)
param.append(p)

for epoch in range(max_epoch):
start_time = time.time()
np.random.shuffle(idx)

if ((DIST == False) or (sgd.global_rank == 0)):
print('Starting Epoch %d:' % (epoch))

# Training phase
autograd.training = True
train_correct = np.zeros(shape=[1], dtype=np.float32)
test_correct = np.zeros(shape=[1], dtype=np.float32)
train_loss = np.zeros(shape=[1], dtype=np.float32)

for b in range(num_train_batch):
x = train_x[idx[b * batch_size:(b + 1) * batch_size]]
x = augmentation(x, batch_size)
x = resize_dataset(x, IMG_SIZE)
y = train_y[idx[b * batch_size:(b + 1) * batch_size]]
tx.copy_from_numpy(x)
ty.copy_from_numpy(y)
out = model(tx)
loss = autograd.softmax_cross_entropy(out, ty)
train_correct += accuracy(tensor.to_numpy(out),
to_categorical(y, num_classes)).astype(
np.float32)
train_loss += tensor.to_numpy(loss)[0]
if not partial_update:
sgd.backward_and_update(loss)
else:
sgd.backward_and_partial_update(loss)

if DIST:
# Reduce the evaluation accuracy and loss from multiple devices
reducer = tensor.Tensor((1,), dev, tensor.float32)
train_correct = reduce_variable(train_correct, sgd, reducer)
train_loss = reduce_variable(train_loss, sgd, reducer)

# Output the training loss and accuracy
if ((DIST == False) or (sgd.global_rank == 0)):
print('Training loss = %f, training accuracy = %f' %
(train_loss, train_correct /
(num_train_batch * batch_size * world_size)),
flush=True)

if partial_update:
# Sychronize parameters before evaluation phase
for p in param:
synchronize(p, sgd)

# Evaulation phase
autograd.training = False
for b in range(num_test_batch):
x = test_x[b * batch_size:(b + 1) * batch_size]
x = resize_dataset(x, IMG_SIZE)
y = test_y[b * batch_size:(b + 1) * batch_size]
tx.copy_from_numpy(x)
ty.copy_from_numpy(y)
out_test = model(tx)
test_correct += accuracy(tensor.to_numpy(out_test),
to_categorical(y, num_classes))

if DIST:
# Reduce the evaulation accuracy from multiple devices
test_correct = reduce_variable(test_correct, sgd, reducer)

# Output the evaluation accuracy
if ((DIST == False) or (sgd.global_rank == 0)):
print('Evaluation accuracy = %f, Elapsed Time = %fs' %
(test_correct / (num_test_batch * batch_size * world_size),
time.time() - start_time),
flush=True)


if __name__ == '__main__':

DIST = False
train_cifar10(DIST=DIST)

0 comments on commit edfac8f

Please sign in to comment.