Skip to content

Commit

Permalink
Merge pull request #1185 from Zrealshadow/dev-postgresql-patch
Browse files Browse the repository at this point in the history
add the implementations of xceptionnet model in the autograd
  • Loading branch information
lzjpaul authored Jul 17, 2024
2 parents 9caa25d + cdd8ece commit ef7b196
Showing 1 changed file with 309 additions and 0 deletions.
309 changes: 309 additions & 0 deletions examples/cnn_ms/model/xceptionnet.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,309 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================

# the code is modified from
# https://github.com/Cadene/pretrained-models.pytorch/blob/master/pretrainedmodels/models/xception.py

from singa import layer
from singa import model


class Block(layer.Layer):

def __init__(self,
in_filters,
out_filters,
reps,
strides=1,
padding=0,
start_with_relu=True,
grow_first=True):
super(Block, self).__init__()

if out_filters != in_filters or strides != 1:
self.skip = layer.Conv2d(in_filters,
out_filters,
1,
stride=strides,
padding=padding,
bias=False)
self.skipbn = layer.BatchNorm2d(out_filters)
else:
self.skip = None

self.layers = []

filters = in_filters
if grow_first:
self.layers.append(layer.ReLU())
self.layers.append(
layer.SeparableConv2d(in_filters,
out_filters,
3,
stride=1,
padding=1,
bias=False))
self.layers.append(layer.BatchNorm2d(out_filters))
filters = out_filters

for i in range(reps - 1):
self.layers.append(layer.ReLU())
self.layers.append(
layer.SeparableConv2d(filters,
filters,
3,
stride=1,
padding=1,
bias=False))
self.layers.append(layer.BatchNorm2d(filters))

if not grow_first:
self.layers.append(layer.ReLU())
self.layers.append(
layer.SeparableConv2d(in_filters,
out_filters,
3,
stride=1,
padding=1,
bias=False))
self.layers.append(layer.BatchNorm2d(out_filters))

if not start_with_relu:
self.layers = self.layers[1:]
else:
self.layers[0] = layer.ReLU()

if strides != 1:
self.layers.append(layer.MaxPool2d(3, strides, padding + 1))

self.register_layers(*self.layers)

self.add = layer.Add()

def forward(self, x):
y = self.layers[0](x)
for layer in self.layers[1:]:
if isinstance(y, tuple):
y = y[0]
y = layer(y)

if self.skip is not None:
skip = self.skip(x)
skip = self.skipbn(skip)
else:
skip = x
y = self.add(y, skip)
return y


class Xception(model.Model):
"""
Xception optimized for the ImageNet dataset, as specified in
https://arxiv.org/pdf/1610.02357.pdf
"""

def __init__(self, num_classes=10, num_channels=3):
""" Constructor
Args:
num_classes: number of classes
"""
super(Xception, self).__init__()
self.num_classes = num_classes
self.input_size = 299
self.dimension = 4

self.conv1 = layer.Conv2d(num_channels, 32, 3, 2, 0, bias=False)
self.bn1 = layer.BatchNorm2d(32)
self.relu1 = layer.ReLU()

self.conv2 = layer.Conv2d(32, 64, 3, 1, 1, bias=False)
self.bn2 = layer.BatchNorm2d(64)
self.relu2 = layer.ReLU()
# do relu here

self.block1 = Block(64,
128,
2,
2,
padding=0,
start_with_relu=False,
grow_first=True)
self.block2 = Block(128,
256,
2,
2,
padding=0,
start_with_relu=True,
grow_first=True)
self.block3 = Block(256,
728,
2,
2,
padding=0,
start_with_relu=True,
grow_first=True)

self.block4 = Block(728,
728,
3,
1,
start_with_relu=True,
grow_first=True)
self.block5 = Block(728,
728,
3,
1,
start_with_relu=True,
grow_first=True)
self.block6 = Block(728,
728,
3,
1,
start_with_relu=True,
grow_first=True)
self.block7 = Block(728,
728,
3,
1,
start_with_relu=True,
grow_first=True)

self.block8 = Block(728,
728,
3,
1,
start_with_relu=True,
grow_first=True)
self.block9 = Block(728,
728,
3,
1,
start_with_relu=True,
grow_first=True)
self.block10 = Block(728,
728,
3,
1,
start_with_relu=True,
grow_first=True)
self.block11 = Block(728,
728,
3,
1,
start_with_relu=True,
grow_first=True)

self.block12 = Block(728,
1024,
2,
2,
start_with_relu=True,
grow_first=False)

self.conv3 = layer.SeparableConv2d(1024, 1536, 3, 1, 1)
self.bn3 = layer.BatchNorm2d(1536)
self.relu3 = layer.ReLU()

# do relu here
self.conv4 = layer.SeparableConv2d(1536, 2048, 3, 1, 1)
self.bn4 = layer.BatchNorm2d(2048)

self.relu4 = layer.ReLU()
self.globalpooling = layer.MaxPool2d(10, 1)
self.flatten = layer.Flatten()
self.fc = layer.Linear(num_classes)

self.softmax_cross_entropy = layer.SoftMaxCrossEntropy()

def features(self, input):
x = self.conv1(input)
x = self.bn1(x)
x = self.relu1(x)

x = self.conv2(x)
x = self.bn2(x)
x = self.relu2(x)

x = self.block1(x)
x = self.block2(x)
x = self.block3(x)
x = self.block4(x)
x = self.block5(x)
x = self.block6(x)
x = self.block7(x)
x = self.block8(x)
x = self.block9(x)
x = self.block10(x)
x = self.block11(x)
x = self.block12(x)

x = self.conv3(x)
x = self.bn3(x)
x = self.relu3(x)

x = self.conv4(x)
x = self.bn4(x)
return x

def logits(self, features):
x = self.relu4(features)
x = self.globalpooling(x)
x = self.flatten(x)
x = self.fc(x)
return x

def forward(self, x):
x = self.features(x)
x = self.logits(x)
return x

def train_one_batch(self, x, y, dist_option, spars):
out = self.forward(x)
loss = self.softmax_cross_entropy(out, y)
if dist_option == 'plain':
self.optimizer(loss)
elif dist_option == 'half':
self.optimizer.backward_and_update_half(loss)
elif dist_option == 'partialUpdate':
self.optimizer.backward_and_partial_update(loss)
elif dist_option == 'sparseTopK':
self.optimizer.backward_and_sparse_update(loss,
topK=True,
spars=spars)
elif dist_option == 'sparseThreshold':
self.optimizer.backward_and_sparse_update(loss,
topK=False,
spars=spars)
return out, loss

def set_optimizer(self, optimizer):
self.optimizer = optimizer


def create_model(pretrained=False, **kwargs):
"""Constructs a Xceptionnet model.
Args:
pretrained (bool): If True, returns a pre-trained model.
Returns:
The created Xceptionnet model.
"""
model = Xception(**kwargs)

return model


__all__ = ['Xception', 'create_model']

0 comments on commit ef7b196

Please sign in to comment.