-
Notifications
You must be signed in to change notification settings - Fork 1.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #1175 from jinyangturbo/dev-postgresql
Create mnist_cnn.py
- Loading branch information
Showing
1 changed file
with
304 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,304 @@ | ||
# | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# | ||
|
||
from singa import singa_wrap as singa | ||
from singa import autograd | ||
from singa import layer | ||
from singa import tensor | ||
from singa import device | ||
from singa import opt | ||
import numpy as np | ||
import os | ||
import sys | ||
import gzip | ||
import codecs | ||
import time | ||
|
||
|
||
class CNN: | ||
|
||
def __init__(self): | ||
self.conv1 = layer.Conv2d(1, 20, 5, padding=0) | ||
self.conv2 = layer.Conv2d(20, 50, 5, padding=0) | ||
self.linear1 = layer.Linear(4 * 4 * 50, 500) | ||
self.linear2 = layer.Linear(500, 10) | ||
self.pooling1 = layer.MaxPool2d(2, 2, padding=0) | ||
self.pooling2 = layer.MaxPool2d(2, 2, padding=0) | ||
self.relu1 = layer.ReLU() | ||
self.relu2 = layer.ReLU() | ||
self.relu3 = layer.ReLU() | ||
self.flatten = layer.Flatten() | ||
|
||
def forward(self, x): | ||
y = self.conv1(x) | ||
y = self.relu1(y) | ||
y = self.pooling1(y) | ||
y = self.conv2(y) | ||
y = self.relu2(y) | ||
y = self.pooling2(y) | ||
y = self.flatten(y) | ||
y = self.linear1(y) | ||
y = self.relu3(y) | ||
y = self.linear2(y) | ||
return y | ||
|
||
|
||
def check_dataset_exist(dirpath): | ||
if not os.path.exists(dirpath): | ||
print( | ||
'The MNIST dataset does not exist. Please download the mnist dataset using download_mnist.py (e.g. python3 download_mnist.py)' | ||
) | ||
sys.exit(0) | ||
return dirpath | ||
|
||
|
||
def load_dataset(): | ||
train_x_path = '/tmp/train-images-idx3-ubyte.gz' | ||
train_y_path = '/tmp/train-labels-idx1-ubyte.gz' | ||
valid_x_path = '/tmp/t10k-images-idx3-ubyte.gz' | ||
valid_y_path = '/tmp/t10k-labels-idx1-ubyte.gz' | ||
|
||
train_x = read_image_file(check_dataset_exist(train_x_path)).astype( | ||
np.float32) | ||
train_y = read_label_file(check_dataset_exist(train_y_path)).astype( | ||
np.float32) | ||
valid_x = read_image_file(check_dataset_exist(valid_x_path)).astype( | ||
np.float32) | ||
valid_y = read_label_file(check_dataset_exist(valid_y_path)).astype( | ||
np.float32) | ||
return train_x, train_y, valid_x, valid_y | ||
|
||
|
||
def read_label_file(path): | ||
with gzip.open(path, 'rb') as f: | ||
data = f.read() | ||
assert get_int(data[:4]) == 2049 | ||
length = get_int(data[4:8]) | ||
parsed = np.frombuffer(data, dtype=np.uint8, offset=8).reshape((length)) | ||
return parsed | ||
|
||
|
||
def get_int(b): | ||
return int(codecs.encode(b, 'hex'), 16) | ||
|
||
|
||
def read_image_file(path): | ||
with gzip.open(path, 'rb') as f: | ||
data = f.read() | ||
assert get_int(data[:4]) == 2051 | ||
length = get_int(data[4:8]) | ||
num_rows = get_int(data[8:12]) | ||
num_cols = get_int(data[12:16]) | ||
parsed = np.frombuffer(data, dtype=np.uint8, offset=16).reshape( | ||
(length, 1, num_rows, num_cols)) | ||
return parsed | ||
|
||
|
||
def to_categorical(y, num_classes): | ||
y = np.array(y, dtype="int") | ||
n = y.shape[0] | ||
categorical = np.zeros((n, num_classes)) | ||
categorical[np.arange(n), y] = 1 | ||
categorical = categorical.astype(np.float32) | ||
return categorical | ||
|
||
|
||
def accuracy(pred, target): | ||
y = np.argmax(pred, axis=1) | ||
t = np.argmax(target, axis=1) | ||
a = y == t | ||
return np.array(a, "int").sum() | ||
|
||
|
||
# Function to all reduce NUMPY accuracy and loss from multiple devices | ||
def reduce_variable(variable, dist_opt, reducer): | ||
reducer.copy_from_numpy(variable) | ||
dist_opt.all_reduce(reducer.data) | ||
dist_opt.wait() | ||
output = tensor.to_numpy(reducer) | ||
return output | ||
|
||
|
||
# Function to sychronize SINGA TENSOR initial model parameters | ||
def synchronize(tensor, dist_opt): | ||
dist_opt.all_reduce(tensor.data) | ||
dist_opt.wait() | ||
tensor /= dist_opt.world_size | ||
|
||
|
||
# Data augmentation | ||
def augmentation(x, batch_size): | ||
xpad = np.pad(x, [[0, 0], [0, 0], [4, 4], [4, 4]], 'symmetric') | ||
for data_num in range(0, batch_size): | ||
offset = np.random.randint(8, size=2) | ||
x[data_num, :, :, :] = xpad[data_num, :, offset[0]:offset[0] + 28, | ||
offset[1]:offset[1] + 28] | ||
if_flip = np.random.randint(2) | ||
if (if_flip): | ||
x[data_num, :, :, :] = x[data_num, :, :, ::-1] | ||
return x | ||
|
||
|
||
# Data partition | ||
def data_partition(dataset_x, dataset_y, global_rank, world_size): | ||
data_per_rank = dataset_x.shape[0] // world_size | ||
idx_start = global_rank * data_per_rank | ||
idx_end = (global_rank + 1) * data_per_rank | ||
return dataset_x[idx_start:idx_end], dataset_y[idx_start:idx_end] | ||
|
||
|
||
def train_mnist_cnn(DIST=False, | ||
local_rank=None, | ||
world_size=None, | ||
nccl_id=None, | ||
spars=0, | ||
topK=False, | ||
corr=True): | ||
|
||
# Define the hypermeters for the mnist_cnn | ||
max_epoch = 10 | ||
batch_size = 64 | ||
sgd = opt.SGD(lr=0.005, momentum=0.9, weight_decay=1e-5) | ||
|
||
# Prepare training and valadiation data | ||
train_x, train_y, test_x, test_y = load_dataset() | ||
IMG_SIZE = 28 | ||
num_classes = 10 | ||
train_y = to_categorical(train_y, num_classes) | ||
test_y = to_categorical(test_y, num_classes) | ||
|
||
# Normalization | ||
train_x = train_x / 255 | ||
test_x = test_x / 255 | ||
|
||
if DIST: | ||
# For distributed GPU training | ||
sgd = opt.DistOpt(sgd, | ||
nccl_id=nccl_id, | ||
local_rank=local_rank, | ||
world_size=world_size) | ||
dev = device.create_cuda_gpu_on(sgd.local_rank) | ||
|
||
# Dataset partition for distributed training | ||
train_x, train_y = data_partition(train_x, train_y, sgd.global_rank, | ||
sgd.world_size) | ||
test_x, test_y = data_partition(test_x, test_y, sgd.global_rank, | ||
sgd.world_size) | ||
world_size = sgd.world_size | ||
else: | ||
# For single GPU | ||
dev = device.create_cuda_gpu() | ||
world_size = 1 | ||
|
||
# Create model | ||
model = CNN() | ||
|
||
tx = tensor.Tensor((batch_size, 1, IMG_SIZE, IMG_SIZE), dev, tensor.float32) | ||
ty = tensor.Tensor((batch_size, num_classes), dev, tensor.int32) | ||
num_train_batch = train_x.shape[0] // batch_size | ||
num_test_batch = test_x.shape[0] // batch_size | ||
idx = np.arange(train_x.shape[0], dtype=np.int32) | ||
|
||
if DIST: | ||
#Sychronize the initial parameters | ||
autograd.training = True | ||
x = np.random.randn(batch_size, 1, IMG_SIZE, | ||
IMG_SIZE).astype(np.float32) | ||
y = np.zeros(shape=(batch_size, num_classes), dtype=np.int32) | ||
tx.copy_from_numpy(x) | ||
ty.copy_from_numpy(y) | ||
out = model.forward(tx) | ||
loss = autograd.softmax_cross_entropy(out, ty) | ||
for p, g in autograd.backward(loss): | ||
synchronize(p, sgd) | ||
|
||
# Training and evaulation loop | ||
for epoch in range(max_epoch): | ||
start_time = time.time() | ||
np.random.shuffle(idx) | ||
|
||
if ((DIST == False) or (sgd.global_rank == 0)): | ||
print('Starting Epoch %d:' % (epoch)) | ||
|
||
# Training phase | ||
autograd.training = True | ||
train_correct = np.zeros(shape=[1], dtype=np.float32) | ||
test_correct = np.zeros(shape=[1], dtype=np.float32) | ||
train_loss = np.zeros(shape=[1], dtype=np.float32) | ||
|
||
for b in range(num_train_batch): | ||
x = train_x[idx[b * batch_size:(b + 1) * batch_size]] | ||
x = augmentation(x, batch_size) | ||
y = train_y[idx[b * batch_size:(b + 1) * batch_size]] | ||
tx.copy_from_numpy(x) | ||
ty.copy_from_numpy(y) | ||
out = model.forward(tx) | ||
loss = autograd.softmax_cross_entropy(out, ty) | ||
train_correct += accuracy(tensor.to_numpy(out), y) | ||
train_loss += tensor.to_numpy(loss)[0] | ||
if DIST: | ||
if (spars == 0): | ||
sgd.backward_and_update(loss, threshold=50000) | ||
else: | ||
sgd.backward_and_sparse_update(loss, | ||
spars=spars, | ||
topK=topK, | ||
corr=corr) | ||
else: | ||
sgd(loss) | ||
|
||
if DIST: | ||
# Reduce the evaluation accuracy and loss from multiple devices | ||
reducer = tensor.Tensor((1,), dev, tensor.float32) | ||
train_correct = reduce_variable(train_correct, sgd, reducer) | ||
train_loss = reduce_variable(train_loss, sgd, reducer) | ||
|
||
# Output the training loss and accuracy | ||
if ((DIST == False) or (sgd.global_rank == 0)): | ||
print('Training loss = %f, training accuracy = %f' % | ||
(train_loss, train_correct / | ||
(num_train_batch * batch_size * world_size)), | ||
flush=True) | ||
|
||
# Evaluation phase | ||
autograd.training = False | ||
for b in range(num_test_batch): | ||
x = test_x[b * batch_size:(b + 1) * batch_size] | ||
y = test_y[b * batch_size:(b + 1) * batch_size] | ||
tx.copy_from_numpy(x) | ||
ty.copy_from_numpy(y) | ||
out_test = model.forward(tx) | ||
test_correct += accuracy(tensor.to_numpy(out_test), y) | ||
|
||
if DIST: | ||
# Reduce the evaulation accuracy from multiple devices | ||
test_correct = reduce_variable(test_correct, sgd, reducer) | ||
|
||
# Output the evaluation accuracy | ||
if ((DIST == False) or (sgd.global_rank == 0)): | ||
print('Evaluation accuracy = %f, Elapsed Time = %fs' % | ||
(test_correct / (num_test_batch * batch_size * world_size), | ||
time.time() - start_time), | ||
flush=True) | ||
|
||
|
||
if __name__ == '__main__': | ||
|
||
DIST = False | ||
train_mnist_cnn(DIST=DIST) |