Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add the training script for models using MPI #1102

Merged
merged 1 commit into from
Sep 23, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
91 changes: 91 additions & 0 deletions examples/model_selection_psql/ms_mlp/train_mpi.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#


from singa import singa_wrap as singa
from singa import opt
from singa import tensor
import argparse
import train_cnn

singa_dtype = {"float16": tensor.float16, "float32": tensor.float32}

if __name__ == '__main__':
# Use argparse to get command config: max_epoch, model, data, etc., for single gpu training
parser = argparse.ArgumentParser(
description='Training using the autograd and graph.')
parser.add_argument('model',
choices=['cnn', 'resnet', 'xceptionnet', 'mlp'],
default='cnn')
parser.add_argument('data', choices=['mnist', 'cifar10', 'cifar100'], default='mnist')
parser.add_argument('-p',
choices=['float32', 'float16'],
default='float32',
dest='precision')
parser.add_argument('-m',
'--max-epoch',
default=10,
type=int,
help='maximum epochs',
dest='max_epoch')
parser.add_argument('-b',
'--batch-size',
default=64,
type=int,
help='batch size',
dest='batch_size')
parser.add_argument('-l',
'--learning-rate',
default=0.005,
type=float,
help='initial learning rate',
dest='lr')
parser.add_argument('-d',
'--dist-option',
default='plain',
choices=['plain','half','partialUpdate','sparseTopK','sparseThreshold'],
help='distibuted training options',
dest='dist_option') # currently partialUpdate support graph=False only
parser.add_argument('-s',
'--sparsification',
default='0.05',
type=float,
help='the sparsity parameter used for sparsification, between 0 to 1',
dest='spars')
parser.add_argument('-g',
'--disable-graph',
default='True',
action='store_false',
help='disable graph',
dest='graph')
parser.add_argument('-v',
'--log-verbosity',
default=0,
type=int,
help='logging verbosity',
dest='verbosity')

args = parser.parse_args()

sgd = opt.SGD(lr=args.lr, momentum=0.9, weight_decay=1e-5, dtype=singa_dtype[args.precision])
sgd = opt.DistOpt(sgd)

train_cnn.run(sgd.global_rank, sgd.world_size, sgd.local_rank, args.max_epoch,
args.batch_size, args.model, args.data, sgd, args.graph,
args.verbosity, args.dist_option, args.spars, args.precision)
Loading