-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
76 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,74 @@ | ||
import numpy as np | ||
import scipy.stats as stats | ||
import pandas as pd | ||
from .gamma import GammaExponential | ||
from .normal import NormalNormalKnownVar | ||
from .invgamma import InvGammaWeibullKnownShape | ||
try: | ||
from matplotlib import pyplot as plt | ||
except ModuleNotFoundError: | ||
import sys | ||
|
||
sys.stderr.write("matplotlib was not found, plotting would raise an exception.\n") | ||
plt = None | ||
|
||
def aic_bic(data, dist_name, params): | ||
"""Calculate AIC and BIC for a given distribution""" | ||
dist = getattr(stats, dist_name) | ||
log_likelihood = np.sum(dist.logpdf(data, *params)) | ||
k = len(params) | ||
n = len(data) | ||
aic = 2*k - 2*log_likelihood | ||
bic = np.log(n)*k - 2*log_likelihood | ||
return aic, bic | ||
|
||
class ConjugatePrior: | ||
def __init__(self, criterion='aic') -> None: | ||
self.criterion = criterion | ||
self.best_fit = None | ||
self.params = {} | ||
|
||
def fit(self, X): | ||
norm_params = stats.norm.fit(X) | ||
exp_params = stats.expon.fit(X) | ||
weibull_params = stats.weibull_min.fit(X) | ||
|
||
# Calculate AIC and BIC for each distribution | ||
aic_norm, bic_norm = aic_bic(X, 'norm', norm_params) | ||
aic_exp, bic_exp = aic_bic(X, 'expon', exp_params) | ||
aic_weibull, bic_weibull = aic_bic(X, 'weibull_min', weibull_params) | ||
|
||
# Collect results in a DataFrame for comparison | ||
results = pd.DataFrame({ | ||
'Distribution': ['norm', 'expon', 'weibull_min'], | ||
'AIC': [aic_norm, aic_exp, aic_weibull], | ||
'BIC': [bic_norm, bic_exp, bic_weibull] | ||
}) | ||
|
||
if self.criterion.lower() == 'aic': | ||
self.best_fit = results.loc[results['AIC'].idxmin()]["Distribution"] | ||
elif self.criterion.lower() == 'bic': | ||
self.best_fit = results.loc[results['BIC'].idxmin()]["Distribution"] | ||
else: | ||
raise ValueError("Criterion must be either 'aic' or 'bic'") | ||
if self.best_fit == 'norm': | ||
self.params = norm_params | ||
elif self.best_fit == 'expon': | ||
self.params = exp_params | ||
elif self.best_fit == 'weibull_min': | ||
self.params = weibull_params | ||
|
||
def predict(self, X): | ||
if self.best_fit is None: | ||
raise ValueError("You must call the fit method first") | ||
dist = getattr(stats, self.best_fit) | ||
return dist.pdf(X, *self.params) | ||
|
||
def as_prior(self): | ||
# TODO: Check | ||
if self.best_fit == 'norm': | ||
return NormalNormalKnownVar(*self.params) | ||
elif self.best_fit == 'expon': | ||
return GammaExponential(*self.params) | ||
elif self.best_fit == 'weibull_min': | ||
return InvGammaWeibullKnownShape(*self.params) |