Skip to content

augustt198/IntegerMatrixOps.jl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

IntegerMatrixOps.jl

Fast and exact operations for integer matrices.

This solves the problem of LinearAlgebra.det(::Matrix{Int}) being fast but potentially incorrect, while LinearAlgebra.det(::Matrix{BigInt}) is correct but slow.

using IntegerMatrixOps, LinearAlgebra, BenchmarkTools

A = rand(Int, 15, 15)

@btime IntegerMatrixOps.detbig($A);
#  28.750 μs (130 allocations: 9.62 KiB)

@btime LinearAlgebra.det(Abig) setup=(Abig=big.(A));
#  320.375 μs (11171 allocations: 393.80 KiB)

detbig(A) == det(big.(A))
# true

# if only the sign is wanted
@btime IntegerMatrixOps.detsign($A);
#  25.500 μs (2 allocations: 2.34 KiB)

This example shows how computing the determinant with floating point can cause sign errors:

# nearly singular
A = fill(typemax(Int), 10, 10) - I

det(A) # => 0.0 (incorrect)
detsign(A) # => -1 (correct)

rank(A) # => 1 (incorrect)
IntegerMatrixOps.rank(A) # => 10 (correct)

Functions

  • detsign(A) exact sign of derminant of A (-1, 0, or +1)
  • detbig(A) exact determinant returned as a BigInt
  • permbig(A) exact perminant returned as a BigInt

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages