by Jiahao Huang (j.huang21@imperial.ac.uk)
This is the official implementation of our proposed ST-GAN, EES-GAN and TES-GAN:
Fast MRI Reconstruction: How Powerful Transformers Are?
Please cite:
@ARTICLE{2022arXiv220109400H,
author = {{Huang}, Jiahao and {Wu}, Yinzhe and {Wu}, Huanjun and {Yang}, Guang},
title = "{Fast MRI Reconstruction: How Powerful Transformers Are?}",
journal = {arXiv e-prints},
keywords = {Electrical Engineering and Systems Science - Image and Video Processing, Computer Science - Computer Vision and Pattern Recognition, Computer Science - Machine Learning},
year = 2022,
month = jan,
eid = {arXiv:2201.09400},
pages = {arXiv:2201.09400},
archivePrefix = {arXiv},
eprint = {2201.09400},
primaryClass = {eess.IV},
}
matplotlib==3.3.4
opencv-python==4.5.3.56
Pillow==8.3.2
pytorch-fid==0.2.0
scikit-image==0.17.2
scipy==1.5.4
tensorboardX==2.4
timm==0.4.12
torch==1.9.0
torchvision==0.10.0
Use different options (json files) to train different networks.
To train ST-GAN on CC:
python main_train_stganmr.py --opt ./options/STGAN/example/train_stganmr_CCnpi_G1D30.json
To train EES-GAN on CC:
python main_train_eesganmr.py --opt ./options/EESGAN/example/train_eesganmr_CCnpi_G1D30.json
To train TES-GAN on CC:
python main_train_tesganmr.py --opt ./options/TESGAN/example/train_tesganmr_CCnpi_G1D30.json
To test ST-GAN on CC:
python main_test_stganmr_CC.py --opt ./options/STGAN/example/test/test_stganmr_CCnpi_G1D30.json
To test EES-GAN on CC:
python main_test_eesganmr_CC.py --opt ./options/EESGAN/example/test/test_eesganmr_CCnpi_G1D30.json
To test TES-GAN on CC:
python main_test_tesganmr_CC.py --opt ./options/TESGAN/example/test/test_tesganmr_CCnpi_G1D30.json
This repository is based on:
Swin Transformer for Fast MRI (code and paper);
SwinIR: Image Restoration Using Swin Transformer (code and paper);
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows (code and paper).