Use the cosine similarity recommender system algorithm to train and predict ratings for a small (100K) set of items.
Resources
test_100K.csv
- testing dataset (20% from 100K)
- (Format: user_id (int), item_id (int), timestamp (int))
train_100K.csv
- training dataset (80% from 100K)
- (Format: user_id (int), item_id (int), rating (float), timestamp (int))
Output format
File Name: result.csv Columns: user_id (int), item_id (int), rating_prediction (float), timestamp (int) Note: output must be comma delimited without any whitespaces
Use the matrix factorization recommender system algorithm to train and predict ratings for a large (20M) set of items. You may need to use a database to handle the large data.
Resources
test_20M.csv
- testing dataset (20% from 20M)
- (Format: user_id (int), item_id (int), timestamp (int))
train_20M.csv
- training dataset (80% from 20M)
- (Format: user_id (int), item_id (int), rating (float), timestamp (int))
Output format
File Type: .csv Columns: user_id (int), item_id (int), rating_prediction (float), timestamp (int)