-
Notifications
You must be signed in to change notification settings - Fork 86
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
53 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
from baal.active.stopping_criteria import ( | ||
LabellingBudgetStoppingCriterion, | ||
EarlyStoppingCriterion, | ||
LowAverageUncertaintyStoppingCriterion, | ||
) | ||
from baal.active.dataset import ActiveNumpyArray | ||
import numpy as np | ||
|
||
|
||
def test_labelling_budget(): | ||
ds = ActiveNumpyArray((np.random.randn(100, 3), np.random.randint(0, 3, 100))) | ||
ds.label_randomly(10) | ||
criterion = LabellingBudgetStoppingCriterion(ds, labelling_budget=50) | ||
assert not criterion.should_stop([]) | ||
|
||
ds.label_randomly(10) | ||
assert not criterion.should_stop([]) | ||
|
||
ds.label_randomly(40) | ||
assert criterion.should_stop([]) | ||
|
||
|
||
def test_early_stopping(): | ||
ds = ActiveNumpyArray((np.random.randn(100, 3), np.random.randint(0, 3, 100))) | ||
criterion = EarlyStoppingCriterion(ds, "test_loss", patience=5) | ||
|
||
for i in range(10): | ||
assert not criterion.should_stop( | ||
metrics={"test_loss": 1 / (i + 1)}, uncertainty=[] | ||
) | ||
|
||
for _ in range(4): | ||
assert not criterion.should_stop(metrics={"test_loss": 0.1}, uncertainty=[]) | ||
assert criterion.should_stop(metrics={"test_loss": 0.1}, uncertainty=[]) | ||
|
||
# test less than patience stability | ||
criterion = EarlyStoppingCriterion(ds, "test_loss", patience=5) | ||
for _ in range(4): | ||
assert not criterion.should_stop(metrics={"test_loss": 0.1}, uncertainty=[]) | ||
assert criterion.should_stop(metrics={"test_loss": 0.1}, uncertainty=[]) | ||
|
||
|
||
def test_low_average(): | ||
ds = ActiveNumpyArray((np.random.randn(100, 3), np.random.randint(0, 3, 100))) | ||
criterion = LowAverageUncertaintyStoppingCriterion( | ||
active_dataset=ds, avg_uncertainty_thresh=0.1 | ||
) | ||
assert not criterion.should_stop( | ||
metrics={}, uncertainty=np.random.normal(0.5, scale=0.8, size=(100,)) | ||
) | ||
assert criterion.should_stop( | ||
metrics={}, uncertainty=np.random.normal(0.05, scale=0.01, size=(100,)) | ||
) |