Skip to content
/ llm Public

A bunch of experiments using Large Language Models

License

Notifications You must be signed in to change notification settings

beacoder/llm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A bunch of experiments with LLMs

Build RAG application with local LLMs

  1. Install and run Ollama:
# My GPU is "NVIDIA GeForce RTX 4070 Laptop GPU with 8G VRAM", so I downloaded 7B version models.

~$ mkdir ~/workspace/ai/

~/workspace/ai$ curl -fsSL https://ollama.com/install.sh | sh

~/workspace/ai$ ollama pull mistral
~/workspace/ai$ ollama pull qwen2.5
~/workspace/ai$ ollama pull nomic-embed-text

~/workspace/ai$ mkdir bin

# make sure you have all the scripts placed in ~/workspace/ai/bin

~/workspace/ai$ ./bin/run_ollama
  1. Create a virtual environment and install the required packages:
~/workspace/ai$ python3 -m venv test_env
~/workspace/ai$ source test_env/bin/activate
~/workspace/ai$ pip install -r llm/graphrag/requirements.txt
  1. Run GraphRAG to analyze JinPingMei:
~/workspace/ai$ mkdir ~/workspace/ai/ragtest
~/workspace/ai$ cp -rf llm/graphrag/ragtest ~/workspace/ai/ragtest

# apply changes in modified_graphrag to installed graphrag for mistral/qwen2.5 accordingly
# NOTE: finetuned prompt has been provided, if you wanna do it yourself, run ./bin/prompt_tuning

~/workspace/ai$ ./bin/graphrag_index
  1. Search GraphRAG for JinPingMei questions:
~/workspace/ai$ ./bin/local_query "这个章节中,西门庆有几个老婆,他们的关系如何?"

# NOTE: global_query is not working due to graphrag code broken
  1. Run baseline RAG to analyze and search for JinPingMei:
~/workspace/ai$ python3 -m venv test_env2
~/workspace/ai$ source test_env2/bin/activate
~/workspace/ai$ pip install -r llm/rag/requirements.txt

~/workspace/ai$ python bin/langchain_rag.py
~/workspace/ai$ python bin/langchain_rag.py "西门庆参加了哪些聚会?都有哪些人参加了?"

# NOTE: to be able to handle org file, you have to run "pip install pypandoc-binary"
  1. Results
# The model used for these images is qwen2.5, as it's good at Chinese.

# NOTE: The result shows baseline RAG beats GraphRAG most of the time, strange...

西门庆和潘金莲什么关系? 这个章节中,西门庆有几个老婆,他们的关系如何? 这本书主要讲的是什么故事? langchain_rag_questions

Releases

No releases published

Packages

No packages published

Languages