This project implements a deep learning model to classify whether an image contains a chart or not. This can be useful for filtering out non-chart images from a large set of images, and focusing on the subtask of chart analysis, such as chart structure extraction, data extraction, etc.
chart_classifier/
├── config.py # Configuration files
├── data/ # Dataset and data processing
├── models/ # Model architecture
├── trainer/ # Training logic
├── utils/ # Utility functions
├── train.py # Training script
└── inference.py # Inference script
- Clone the repository:
git clone https://github.com/beholder91/chart_classifier.git
cd chart-classifier
- Install dependencies:
pip install -r requirements.txt
To train the model, prepare your data first:
- Place chart images in
data/dataset/charts/
- Place non-chart images in
data/dataset/non-charts/
then run:
python train.py
To run inference on new images:
python inference.py
- Base model: EfficientNet-B0
- Input size: 224x224
- Output: Binary classification (chart/non-chart)
See requirements.txt
for detailed dependencies.
MIT license