This repository contains the code presented in the work:
Graph-based term weighting scheme for topic modeling
If you use part of the code please cite:
@inproceedings{bekoulis2016graph,
title={Graph-based term weighting scheme for topic modeling},
author={Bekoulis, Giannis and Rousseau, Fran{\c{c}}ois},
booktitle={Data Mining Workshops (ICDMW), 2016 IEEE 16th International Conference on Data Mining},
pages={1039--1044},
year={2016},
organization={IEEE}
}
The code has been developed using Anaconda 2.3 and the LDA module version 1.0.2
Install Anaconda 2.3 from https://repo.continuum.io/archive/ and then
pip install lda==1.0.2
To train the TF-LDA module:
python lda_learn_tf_news.py
To train the TW-LDA module:
python lda_learn_tw_news.py
To train the TF-LSI module:
python lsi_learn_tfs_newsgroups.py
To train the TW-LSI module:
python lsi_learn_tws_newsgroups.py
To predict using the TF-LDA module:
python tf_ds_news_group.py
To predict using the TW-LDA module:
python tw_ds_testsallgow_newsgroup.py
To predict using the TF-LSI module:
python tf_ds_tests_news.py
To predict using the TW-LSI module - degree centrality:
python tw_ds_testsalldegree_gow_news.py
To predict using the TW-LSI module - in-degree centrality:
python tw_ds_testsallindegree_gow_news.py
To predict using the TW-LSI module - out-degree centrality:
python tw_ds_testsalloutdegree_gow_news.py
To predict using the TW-LSI module - weighted-degree centrality:
python tw_ds_testsallweighteddegree_gow_news.py