Skip to content

benchopt/benchmark_csc

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

BenchOpt benchmark for Convolutional Sparse Coding

Build Status Python 3.6+

BenchOpt is a package to simplify and make more transparent and reproducible the comparisons of optimization algorithms. This benchmark is dedicated to solver of convolutional sparse coding:

$$\min_{\theta_1, \ldots, \theta_K \in \mathbb{R}^d} \frac{1}{2} \|y - \sum_{k=1}^K d_k * \theta_k\|^2_2 + \lambda \sum_{k=1}^K \|\theta_k\|_1$$

where $K$ is the number of atoms in the dictionary, $d_1, \ldots, d_K \in \mathbb{R}^d$ are the atoms in the dictionary and $*$ denotes the convolution.

Install

This benchmark can be run using the following commands:

pip install -U benchopt
git clone https://github.com/benchopt/benchmark_csc
benchopt run ./benchmark_csc

Apart from the problem, options can be passed to benchopt run, to restrict the benchmarks to some solvers or datasets, e.g.:

benchopt run benchmark_csc -s alphacsc -d simulated --max-runs 10 --n-repetitions 10

Use benchopt run -h for more details about these options, or visit https://benchopt.github.io/api.html.

About

Benchmark for Convolutional Sparse Coding

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages