forked from opencv/opencv
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
extended python interface for KalmanFilter
- Loading branch information
Showing
2 changed files
with
120 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
#!/usr/bin/python | ||
""" | ||
Tracking of rotating point. | ||
Rotation speed is constant. | ||
Both state and measurements vectors are 1D (a point angle), | ||
Measurement is the real point angle + gaussian noise. | ||
The real and the estimated points are connected with yellow line segment, | ||
the real and the measured points are connected with red line segment. | ||
(if Kalman filter works correctly, | ||
the yellow segment should be shorter than the red one). | ||
Pressing any key (except ESC) will reset the tracking with a different speed. | ||
Pressing ESC will stop the program. | ||
""" | ||
import urllib2 | ||
import cv2 | ||
from math import cos, sin, sqrt | ||
import sys | ||
import numpy as np | ||
|
||
if __name__ == "__main__": | ||
|
||
img_height = 500 | ||
img_width = 500 | ||
img = np.array((img_height, img_width, 3), np.uint8) | ||
kalman = cv2.KalmanFilter(2, 1, 0) | ||
state = np.zeros((2, 1)) # (phi, delta_phi) | ||
process_noise = np.zeros((2, 1)) | ||
measurement = np.zeros((1, 1)) | ||
|
||
code = -1L | ||
|
||
cv2.namedWindow("Kalman") | ||
|
||
while True: | ||
state = 0.1 * np.random.randn(2, 1) | ||
|
||
transition_matrix = np.array([[1., 1.], [0., 1.]]) | ||
kalman.setTransitionMatrix(transition_matrix) | ||
measurement_matrix = 1. * np.ones((1, 2)) | ||
kalman.setMeasurementMatrix(measurement_matrix) | ||
|
||
process_noise_cov = 1e-5 | ||
kalman.setProcessNoiseCov(process_noise_cov * np.eye(2)) | ||
|
||
measurement_noise_cov = 1e-1 | ||
kalman.setMeasurementNoiseCov(measurement_noise_cov * np.ones((1, 1))) | ||
|
||
kalman.setErrorCovPost(1. * np.ones((2, 2))) | ||
|
||
kalman.setStatePost(0.1 * np.random.randn(2, 1)) | ||
|
||
while True: | ||
def calc_point(angle): | ||
return (np.around(img_width/2 + img_width/3*cos(angle), 0).astype(int), | ||
np.around(img_height/2 - img_width/3*sin(angle), 1).astype(int)) | ||
|
||
state_angle = state[0, 0] | ||
state_pt = calc_point(state_angle) | ||
|
||
prediction = kalman.predict() | ||
predict_angle = prediction[0, 0] | ||
predict_pt = calc_point(predict_angle) | ||
|
||
|
||
measurement = measurement_noise_cov * np.random.randn(1, 1) | ||
|
||
# generate measurement | ||
measurement = np.dot(measurement_matrix, state) + measurement | ||
|
||
measurement_angle = measurement[0, 0] | ||
measurement_pt = calc_point(measurement_angle) | ||
|
||
# plot points | ||
def draw_cross(center, color, d): | ||
cv2.line(img, (center[0] - d, center[1] - d), | ||
(center[0] + d, center[1] + d), color, 1, cv2.LINE_AA, 0) | ||
cv2.line(img, (center[0] + d, center[1] - d), | ||
(center[0] - d, center[1] + d), color, 1, cv2.LINE_AA, 0) | ||
|
||
img = np.zeros((img_height, img_width, 3), np.uint8) | ||
draw_cross(np.int32(state_pt), (255, 255, 255), 3) | ||
draw_cross(np.int32(measurement_pt), (0, 0, 255), 3) | ||
draw_cross(np.int32(predict_pt), (0, 255, 0), 3) | ||
|
||
cv2.line(img, state_pt, measurement_pt, (0, 0, 255), 3, cv2.LINE_AA, 0) | ||
cv2.line(img, state_pt, predict_pt, (0, 255, 255), 3, cv2.LINE_AA, 0) | ||
|
||
kalman.correct(measurement) | ||
|
||
process_noise = process_noise_cov * np.random.randn(2, 1) | ||
|
||
state = np.dot(transition_matrix, state) + process_noise | ||
|
||
cv2.imshow("Kalman", img) | ||
|
||
code = cv2.waitKey(100) % 0x100 | ||
if code != -1: | ||
break | ||
|
||
if code in [27, ord('q'), ord('Q')]: | ||
break | ||
|
||
cv2.destroyWindow("Kalman") |