-
Notifications
You must be signed in to change notification settings - Fork 18
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #155 from KenelmQLH/dev
[FEATURE] Update D2V, AutoTokenizer, and pretraining scripts
- Loading branch information
Showing
50 changed files
with
1,940 additions
and
587 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,5 +1,6 @@ | ||
from .utils import * | ||
from .bert import * | ||
from .hf_model import * | ||
from .rnn import * | ||
from .disenqnet import * | ||
from .quesnet import * |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
from .hf_model import * |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,165 @@ | ||
import torch | ||
from torch import nn | ||
import json | ||
import os | ||
from transformers import AutoModel, PretrainedConfig, AutoConfig | ||
from typing import List | ||
from EduNLP.utils.log import logger | ||
from ..base_model import BaseModel | ||
from ..utils import PropertyPredictionOutput, KnowledgePredictionOutput | ||
from ..rnn.harnn import HAM | ||
|
||
|
||
__all__ = ["HfModelForPropertyPrediction", "HfModelForKnowledgePrediction"] | ||
|
||
|
||
class HfModelForPropertyPrediction(BaseModel): | ||
def __init__(self, pretrained_model_dir=None, head_dropout=0.5, init=True): | ||
super(HfModelForPropertyPrediction, self).__init__() | ||
bert_config = AutoConfig.from_pretrained(pretrained_model_dir) | ||
if init: | ||
logger.info(f'Load AutoModel from checkpoint: {pretrained_model_dir}') | ||
self.model = AutoModel.from_pretrained(pretrained_model_dir) | ||
else: | ||
logger.info(f'Load AutoModel from config: {pretrained_model_dir}') | ||
self.model = AutoModel(bert_config) | ||
self.hidden_size = self.model.config.hidden_size | ||
self.head_dropout = head_dropout | ||
self.dropout = nn.Dropout(head_dropout) | ||
self.classifier = nn.Linear(self.hidden_size, 1) | ||
self.sigmoid = nn.Sigmoid() | ||
self.criterion = nn.MSELoss() | ||
|
||
self.config = {k: v for k, v in locals().items() if k not in ["self", "__class__", "bert_config"]} | ||
self.config['architecture'] = 'HfModelForPropertyPrediction' | ||
self.config = PretrainedConfig.from_dict(self.config) | ||
|
||
def forward(self, | ||
input_ids=None, | ||
attention_mask=None, | ||
token_type_ids=None, | ||
labels=None): | ||
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) | ||
item_embeds = outputs.last_hidden_state[:, 0, :] | ||
item_embeds = self.dropout(item_embeds) | ||
|
||
logits = self.sigmoid(self.classifier(item_embeds)).squeeze(1) | ||
loss = None | ||
if labels is not None: | ||
loss = self.criterion(logits, labels) if labels is not None else None | ||
return PropertyPredictionOutput( | ||
loss=loss, | ||
logits=logits, | ||
) | ||
|
||
@classmethod | ||
def from_config(cls, config_path, **kwargs): | ||
config_path = os.path.join(os.path.dirname(config_path), 'model_config.json') | ||
with open(config_path, "r", encoding="utf-8") as rf: | ||
model_config = json.load(rf) | ||
model_config['pretrained_model_dir'] = os.path.dirname(config_path) | ||
model_config.update(kwargs) | ||
return cls( | ||
pretrained_model_dir=model_config['pretrained_model_dir'], | ||
head_dropout=model_config.get("head_dropout", 0.5), | ||
init=model_config.get('init', False) | ||
) | ||
|
||
def save_config(self, config_dir): | ||
config_path = os.path.join(config_dir, "model_config.json") | ||
with open(config_path, "w", encoding="utf-8") as wf: | ||
json.dump(self.config.to_dict(), wf, ensure_ascii=False, indent=2) | ||
self.model.config.save_pretrained(config_dir) | ||
|
||
|
||
class HfModelForKnowledgePrediction(BaseModel): | ||
def __init__(self, | ||
pretrained_model_dir=None, | ||
num_classes_list: List[int] = None, | ||
num_total_classes: int = None, | ||
head_dropout=0.5, | ||
flat_cls_weight=0.5, | ||
attention_unit_size=256, | ||
fc_hidden_size=512, | ||
beta=0.5, | ||
init=True | ||
): | ||
super(HfModelForKnowledgePrediction, self).__init__() | ||
bert_config = AutoConfig.from_pretrained(pretrained_model_dir) | ||
if init: | ||
logger.info(f'Load AutoModel from checkpoint: {pretrained_model_dir}') | ||
self.model = AutoModel.from_pretrained(pretrained_model_dir) | ||
else: | ||
logger.info(f'Load AutoModel from config: {pretrained_model_dir}') | ||
self.model = AutoModel(bert_config) | ||
self.hidden_size = self.model.config.hidden_size | ||
self.head_dropout = head_dropout | ||
self.dropout = nn.Dropout(head_dropout) | ||
self.sigmoid = nn.Sigmoid() | ||
self.criterion = nn.MSELoss() | ||
self.flat_classifier = nn.Linear(self.hidden_size, num_total_classes) | ||
self.ham_classifier = HAM( | ||
num_classes_list=num_classes_list, | ||
num_total_classes=num_total_classes, | ||
sequence_model_hidden_size=self.model.config.hidden_size, | ||
attention_unit_size=attention_unit_size, | ||
fc_hidden_size=fc_hidden_size, | ||
beta=beta, | ||
dropout_rate=head_dropout | ||
) | ||
self.flat_cls_weight = flat_cls_weight | ||
self.num_classes_list = num_classes_list | ||
self.num_total_classes = num_total_classes | ||
|
||
self.config = {k: v for k, v in locals().items() if k not in ["self", "__class__", "bert_config"]} | ||
self.config['architecture'] = 'HfModelForKnowledgePrediction' | ||
self.config = PretrainedConfig.from_dict(self.config) | ||
|
||
def forward(self, | ||
input_ids=None, | ||
attention_mask=None, | ||
token_type_ids=None, | ||
labels=None): | ||
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) | ||
item_embeds = outputs.last_hidden_state[:, 0, :] | ||
item_embeds = self.dropout(item_embeds) | ||
tokens_embeds = outputs.last_hidden_state | ||
tokens_embeds = self.dropout(tokens_embeds) | ||
flat_logits = self.sigmoid(self.flat_classifier(item_embeds)) | ||
ham_outputs = self.ham_classifier(tokens_embeds) | ||
ham_logits = self.sigmoid(ham_outputs.scores) | ||
logits = self.flat_cls_weight * flat_logits + (1 - self.flat_cls_weight) * ham_logits | ||
loss = None | ||
if labels is not None: | ||
labels = torch.sum(torch.nn.functional.one_hot(labels, num_classes=self.num_total_classes), dim=1) | ||
labels = labels.float() | ||
loss = self.criterion(logits, labels) if labels is not None else None | ||
return KnowledgePredictionOutput( | ||
loss=loss, | ||
logits=logits, | ||
) | ||
|
||
@classmethod | ||
def from_config(cls, config_path, **kwargs): | ||
config_path = os.path.join(os.path.dirname(config_path), 'model_config.json') | ||
with open(config_path, "r", encoding="utf-8") as rf: | ||
model_config = json.load(rf) | ||
model_config['pretrained_model_dir'] = os.path.dirname(config_path) | ||
model_config.update(kwargs) | ||
return cls( | ||
pretrained_model_dir=model_config['pretrained_model_dir'], | ||
head_dropout=model_config.get("head_dropout", 0.5), | ||
num_classes_list=model_config.get('num_classes_list'), | ||
num_total_classes=model_config.get('num_total_classes'), | ||
flat_cls_weight=model_config.get('flat_cls_weight', 0.5), | ||
attention_unit_size=model_config.get('attention_unit_size', 256), | ||
fc_hidden_size=model_config.get('fc_hidden_size', 512), | ||
beta=model_config.get('beta', 0.5), | ||
init=model_config.get('init', False) | ||
) | ||
|
||
def save_config(self, config_dir): | ||
config_path = os.path.join(config_dir, "model_config.json") | ||
with open(config_path, "w", encoding="utf-8") as wf: | ||
json.dump(self.config.to_dict(), wf, ensure_ascii=False, indent=2) | ||
self.model.config.save_pretrained(config_dir) |
Oops, something went wrong.