Skip to content

Commit

Permalink
fix README
Browse files Browse the repository at this point in the history
  • Loading branch information
Benedikt Obermayer committed Oct 29, 2019
1 parent 4137afd commit 0a48e9c
Showing 1 changed file with 8 additions and 8 deletions.
16 changes: 8 additions & 8 deletions README.rst
Original file line number Diff line number Diff line change
Expand Up @@ -71,16 +71,16 @@ and then point your browser to http://0.0.0.0:8050/.
Preparing Your Data
-------------------

Data sets are provided as HDF5 files (`anndata <https://anndata.readthedocs.io/en/latest/index.html>`_ objects) that store gene expression (sparse CSR matrix) and meta data with very fast read access.
Data sets are provided as HDF5 files (`anndata <https://anndata.readthedocs.io/en/latest/index.html>`__ objects) that store gene expression (sparse CSR matrix) and meta data with very fast read access.

For the input you can either specify one HDF5 file or a directory containing multiple such files.

You can use `scanpy <http://scanpy.rtfd.io>`_ to create this HDF5 file directly or use the ``scelvis convert`` command for converting your single-cell pipeline output.
You can use `scanpy <http://scanpy.rtfd.io>`__ to create this HDF5 file directly or use the ``scelvis convert`` command for converting your single-cell pipeline output.

HDF5 Input
----------

for HDF5 input, you can do your analysis with `scanpy <http://scanpy.rtfd.io>`_ to create an anndata object ``ad``. SCelVis will use embedding coordinates from ``ad.obsm``, cell annotation from ``ad.obs`` and expression data directly from ``ad.X`` (this should contain normalized and log-transformed expression values for all genes). If present, information about the dataset will be extracted from strings stored in ``ad.uns['about_title']``, ``ad.uns['about_short_title']`` and ``ad.uns['about_readme']`` (assumed to be Markdown). Information about marker genes will be taken either from the ``rank_genes_groups`` slot in ``ad.uns`` or from entries starting with ``marker_`` in ``ad.uns``: entries called ``marker_gene`` (required!), ``marker_cluster``, ``marker_padj``, ``marker_LFC`` will create a table with the columns ``gene``, ``cluster``, ``padj``, and ``LFC``.
for HDF5 input, you can do your analysis with `scanpy <http://scanpy.rtfd.io>`__ to create an anndata object ``ad``. SCelVis will use embedding coordinates from ``ad.obsm``, cell annotation from ``ad.obs`` and expression data directly from ``ad.X`` (this should contain normalized and log-transformed expression values for all genes). If present, information about the dataset will be extracted from strings stored in ``ad.uns['about_title']``, ``ad.uns['about_short_title']`` and ``ad.uns['about_readme']`` (assumed to be Markdown). Information about marker genes will be taken either from the ``rank_genes_groups`` slot in ``ad.uns`` or from entries starting with ``marker_`` in ``ad.uns``: entries called ``marker_gene`` (required!), ``marker_cluster``, ``marker_padj``, ``marker_LFC`` will create a table with the columns ``gene``, ``cluster``, ``padj``, and ``LFC``.

If you prepared your data with ``Seurat`` (v2), you can use ``Convert(from = sobj, to = "anndata", filename = "data.h5ad")`` to get an HDF5 file.

Expand Down Expand Up @@ -134,7 +134,7 @@ in ``examples/dummy_raw.zip`` and ``examples/dummy_about.md`` we provide raw dat
Loom Input
----------

for `loompy <http://loompy.org>`_ or `loomR <https://github.com/mojaveazure/loomR>`_ input, you can convert your data like this:
for `loompy <http://loompy.org>`__ or `loomR <https://github.com/mojaveazure/loomR>`__ input, you can convert your data like this:

.. code-block:: shell
Expand Down Expand Up @@ -192,7 +192,7 @@ Data sources can be:
- paths, e.g., ``relative/paths`` or ``/absolute/paths`` or ``file://url/paths``
- SFTP URLs, e.g., ``sftp://user:password@host/path/to/data``
- FTP URLs, e.g., ``ftp://user:password@host/path/to/data`` (sadly encryption is not supported by the underlying library `PyFilesystem2 <https://github.com/PyFilesystem/pyfilesystem2>`_.
- FTP URLs, e.g., ``ftp://user:password@host/path/to/data`` (sadly encryption is not supported by the underlying library `PyFilesystem2 <https://github.com/PyFilesystem/pyfilesystem2>`__.
- iRODS URLS, e.g., ``irods://user:password@host/zoneName/path/to/data``
- Enable SSL via ``irods+ssl``
- Switch to PAM authentication with ``irods+pam`` (you can combine this with ``+ssl`` in any order)
Expand Down Expand Up @@ -230,7 +230,7 @@ The prerequisites are:
- Python 3, either
- system-wide installation with ``virtualenv``, or
- installed with `Conda <https://docs.conda.io/en/latest/>`_.
- installed with `Conda <https://docs.conda.io/en/latest/>`__.
For ``virtualenv``, first create a virtual environment and activate it.
Expand Down Expand Up @@ -265,13 +265,13 @@ Afterwards, you can run the visualization web server as follows:
Releasing Packages
------------------
For the `PyPi package <https://pypi.org/project/scelvis/>`_:
For the `PyPi package <https://pypi.org/project/scelvis/>`__:
.. code-block:: shell
$ python setup.py sdist
$ twine upload --repository-url https://test.pypi.org/legacy/ dist/scelvis-*.tar.gz
$ twine upload dist/scelvis-*.tar.gz
For the Bioconda package, see `the great documentation <http://bioconda.github.io/updating.html>`_.
For the Bioconda package, see `the great documentation <http://bioconda.github.io/updating.html>`__.
The Docker image will automatically be created as a BioContainer when the Bioconda package is built.

0 comments on commit 0a48e9c

Please sign in to comment.