Skip to content

Commit

Permalink
readme update
Browse files Browse the repository at this point in the history
  • Loading branch information
bilkosem authored Sep 22, 2020
1 parent 6d5ae69 commit 451f875
Showing 1 changed file with 15 additions and 7 deletions.
22 changes: 15 additions & 7 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@
## What is Q-RNN? 🤔
![Random Neuron](images/random_neuron.png)

(Hossam Abdelbaki (2020). rnnsimv2.zip (https://www.mathworks.com/matlabcentral/fileexchange/91-rnnsimv2-zip), MATLAB Central File Exchange. Retrieved September 22, 2020.)
(Look of a Random Neuron [4])

It is a compose of Simple RNN and [Random Neural Network](https://github.com/bilkosem/random_neural_network). Queueing RNN uses the fundamental math of Queueing Theory and G-Queues while combining it with the powerful architecture of Recurrent Neural Networks. For more detailed explanation about the theoretical background of QRNN check the [mathematical-model](https://github.com/bilkosem/queueing-rnn/tree/master/mathematical-model) folder, and references section.

Expand All @@ -23,7 +23,7 @@ In order to evaluate the performance of QRNN, it has been compared with LSTM, GR

![Overall Comparison](test_results/overall_comparison.png)

For more detailed results check the [test_results](https://github.com/bilkosem/queueing-rnn/tree/master/test_results) folder 🔎.
Check the [test_results](https://github.com/bilkosem/queueing-rnn/tree/master/test_results) folder to see detailed results 🔎.

## Installation 🛠

Expand All @@ -45,17 +45,25 @@ python setup.py install

```python
from queueing_rnn import QRNN
```

data=data.reshape((samples,timesteps,features))
qrnn = QRNN([features, hidden neurons, output neurons]) # Shape of the network

for s in range(samples):
qrnn.feedforward()
# Calculate Loss
qrnn.backpropagation()
```
Check the [examples](https://github.com/bilkosem/queueing-rnn/tree/master/examples) folder to see detailed use 🔎.
## References 📚

[Gelenbe, Erol. (1989). Random Neural Networks with Negative and Positive Signals and Product Form Solution. Neural Computation - NECO. 1. 502-510. 10.1162/neco.1989.1.4.502.](https://www.researchgate.net/publication/239294946_Random_Neural_Networks_with_Negative_and_Positive_Signals_and_Product_Form_Solution)
[1] [Gelenbe, Erol. (1989). Random Neural Networks with Negative and Positive Signals and Product Form Solution. Neural Computation - NECO. 1. 502-510. 10.1162/neco.1989.1.4.502.](https://www.researchgate.net/publication/239294946_Random_Neural_Networks_with_Negative_and_Positive_Signals_and_Product_Form_Solution)

[Gelenbe, Erol. (1993). Learning in the Recurrent Random Neural Network. Neural Computation. 5. 154-164. 10.1162/neco.1993.5.1.154.](https://www.researchgate.net/publication/220499635_Learning_in_the_Recurrent_Random_Neural_Network)
[2] [Gelenbe, Erol. (1993). Learning in the Recurrent Random Neural Network. Neural Computation. 5. 154-164. 10.1162/neco.1993.5.1.154.](https://www.researchgate.net/publication/220499635_Learning_in_the_Recurrent_Random_Neural_Network)

[Basterrech, S., & Rubino, G. (2015). Random Neural Network Model for Supervised Learning Problems. Neural Network World, 25, 457-499.](https://www.semanticscholar.org/paper/Random-neural-network-model-for-supervised-learning-Basterrech-Rubino/b2ebb88e1d78c726aab274ec149d65e86999cbef)
[3] [Basterrech, S., & Rubino, G. (2015). Random Neural Network Model for Supervised Learning Problems. Neural Network World, 25, 457-499.](https://www.semanticscholar.org/paper/Random-neural-network-model-for-supervised-learning-Basterrech-Rubino/b2ebb88e1d78c726aab274ec149d65e86999cbef)

[Hossam Abdelbaki (2020). rnnsimv2.zip (https://www.mathworks.com/matlabcentral/fileexchange/91-rnnsimv2-zip), MATLAB Central File Exchange. Retrieved September 22, 2020.](https://www.mathworks.com/matlabcentral/fileexchange/91-rnnsimv2-zip?s_tid=FX_rc1_behav)
[4] [Hossam Abdelbaki (2020). rnnsimv2.zip (https://www.mathworks.com/matlabcentral/fileexchange/91-rnnsimv2-zip), MATLAB Central File Exchange. Retrieved September 22, 2020.](https://www.mathworks.com/matlabcentral/fileexchange/91-rnnsimv2-zip?s_tid=FX_rc1_behav)


## License
Expand Down

0 comments on commit 451f875

Please sign in to comment.