Skip to content
/ TKG-DTI Public

Prediction of drug-target interactions using a knowledge graph that includes the cancer targetome resource

Notifications You must be signed in to change notification settings

biodev/TKG-DTI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Targetome Knowledge Graph for high-quality drug target interaction predictions

corresponding author: evansna@ohsu.edu

Setting up environment with conda/mamba:

(expectation of a cuda enabled GPU)

$ mamba env create -f environment.yml
$ mamba activate tkgdti 

# install tkgdti package
(kgdti) $ pip install -e . 

Downloading and processing datasets

We currently have methods to download the OGB-biokg dataset and the Hetero-A dataset.

(kgdti) $ python ./scripts/create_heteroa.py 
(kgdti) $ python ./scripts/create_biokg.py

Training a Complex^2 model

(tkgdti) $ python train_complex2.py --data /path/to/data/ --out /path/to/output 

Training a GNN model

(tkgdti) $ python train_complex2.py --data /path/to/data/ --out /path/to/output 

See /docs/ for additional details.

About

Prediction of drug-target interactions using a knowledge graph that includes the cancer targetome resource

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published