Basic setting
- Ubuntu installation
- Network connection
- Software updater
- Graphic card driver
- Language setting
- Anaconda
Tensorflow
Pytorch
ETC
- Download ubuntu 18.04 [Link]
- Prepare USB
- Create booting disk [Link(Korean)]
- Turn off Windows Quick Start [Link(Korean)]
- BIOS
- Boot Ubuntu USB
- Install Ubuntu
- Welcome : English
- Keyboard layout : ENG(US)
- Updates and other software : Normal installation / Download updates while installing Ubuntu
- Installation type : something else
- I installed it on the remaining hard disk.
- And, I partitioned it into 'partition swap' and 'ext4'. [Link]
- Where are you : seoul
- Who are you : write your information
- Settings
- Network
- Wired option
- IPv4
- Input (Address, Netmask, Gateway, DNS)
- Searching window
- software update
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo ubuntu-drivers autoinstall
sudo reboot
(after reboot)
sudo nvidia-settings
- Settings
- Region & Language
- Input sources
- Add (+ button) Korean(Hangul) <- If 'Korean(Hangul)' (not 'Korean') does not exist, click 'Manage Installed Languages' and install it
- Delete (- button) English
(Optional - shortcut setting)
- Input sources
- Click Korean(Hangul)
- Option button (It exists only in 'Korean(Hangul)' not ' Korean')
- Hangul toggle key
- Add HAN/ENG key (Alt-R or Hangul)
- Download anaconda (click the reference)
cd
cd Downloads/
bash Anaconda3-5.3.0-Linux-x86_64.sh
- License agreement
- Confirm install location
- /root/.bachrc? [yes]
- VSCode? [No]
(after reboot)
conda --version
- Install CUDA 9.0 [Link]
- Linux / x86_64 / Ubuntu / 17.04 (18.04 is not supported) / runfile (local)
- Base Installer (Download 1.6GB)
cd
cd Downloads/
sudo chmod +x cuda_9.0.176_384.81_linux.run
./cuda_9.0.176_384.81_linux.run --override
- EULA? [accept]
- Unsupported configuration? [yes]
- Graphic driver? [no]
- Cuda toolkit? [yes]
- Confirm toolkit location
- run with 'sudo'? [yes]
- symbolic link? [no]
- Cuda samples? [no]
- Confirm sample location
nvcc --version
- Install CUDA 10.2 [Link]
- wget http://developer.download.nvidia.com/compute/cuda/10.2/Prod/local_installers/cuda_10.2.89_440.33.01_linux.run
- sudo sh cuda_10.2.89_440.33.01_linux.run
- Graphic driver? [no] (important) / symbolic link ? [no] (directly connect individual version by bashrc)
(Optional - install multiple CUDA versions)
- When installing one version according to the above procedure and installing another one, the following error message may occur. (ex: Ubuntu 18.04 + CUDA8.0)
# Command lines
===========
= Summary =
===========
Driver: Not Selected
Toolkit: Installation Failed
Samples: Installation Failed
Logfile is /tmp/cuda_install_13486.log
Signal caught, cleaning up
# Log file
Uncompressing NVIDIA CUDA....................................................................................
Can't locate InstallUtils.pm in @INC (you may need to install the InstallUtils module) (@INC contains: /etc/perl /usr/local/lib/x86_64-linux-gnu/perl/5.26.1 /usr/local/share/perl/5.26.1 /usr/lib/x86_64-linux-gnu/perl5/5.26 /usr/share/perl5 /usr/lib/x86_64-linux-gnu/perl/5.26 /usr/share/perl/5.26 /usr/local/lib/site_perl /usr/lib/x86_64-linux-gnu/perl-base) at ./install-linux.pl line 6.
BEGIN failed--compilation aborted at ./install-linux.pl line 6.
Verifying archive integrity... All good.
Uncompressing NVIDIA CUDA Samples.......................................................................................
Can't locate InstallUtils.pm in @INC (you may need to install the InstallUtils module) (@INC contains: /etc/perl /usr/local/lib/x86_64-linux-gnu/perl/5.26.1 /usr/local/share/perl/5.26.1 /usr/lib/x86_64-linux-gnu/perl5/5.26 /usr/share/perl5 /usr/lib/x86_64-linux-gnu/perl/5.26 /usr/share/perl/5.26 /usr/local/lib/site_perl /usr/lib/x86_64-linux-gnu/perl-base) at ./install-sdk-linux.pl line 6.
BEGIN failed--compilation aborted at ./install-sdk-linux.pl line 6.
'uninstall_cuda_8.0.pl' -> '/usr/local/cuda-8.0/bin/uninstall_cuda_8.0.pl'
- Type the following command and reinstall the CUDA.
- Unpack .run file
./cuda*.run --tar mxvf
- Copy InstallUtils.pm file
cp InstallUtils.pm /usr/lib/x86_64-linux-gnu/perl-base
export $PERL5LIB
- Unpack .run file
(optional - install CUDA 10.0 + CUDNN 7.5)
- Download this “cuDNN v7.0.5 Library for Linux”
- Unpack the archive and move it the contents into the directory where you install CUDA 9.0
# Unpack the archive
tar -zxvf cudnn-9.0-linux-x64-v7.tgz
# Move the unpacked contents to your CUDA directory
sudo cp -P cuda/lib64/libcudnn* /usr/local/cuda-9.0/lib64/
sudo cp cuda/include/cudnn.h /usr/local/cuda-9.0/include/
# Give read access to all users
sudo chmod a+r /usr/local/cuda-9.0/include/cudnn.h /usr/local/cuda-9.0/lib64/libcudnn*
- Install libcupti
sudo apt-get install libcupti-dev
- Do the CUDA post-install actions
gedit ~/.bashrc
- Write the below commands
export PATH="/usr/local/cuda-9.0/bin:$PATH"
export LD_LIBRARY_PATH="/usr/local/cuda-9.0/lib64:$LD_LIBRARY_PATH"
- Restart ! or
source ~/.bashrc
(Optional - Other version)
- Other version [reference]
(Optional - CUDNN PATH)
- Download CUDNN and UNPACK
- move "lib64 and include folders" to
/home/$pID/cudnn/$version
- Add the below commands
export LD_LIBRARY_PATH="/home/$pID/cudnn/$version/lib64:$LD_LIBRARY_PATH"
- Create virtual environment for Tensorflow by Anaconda
conda create -n py36_tensorflow python=3.6
conda activate py36_tensorflow
conda deactivate
- Install tensorflow (latest version)
conda activate py36_tensorflow
pip install --upgrade tensorflow-gpu
python -c "import tensorflow as tf; print(tf.__version__)"
- Download other versions
# example
pip install tensorflow-gpu==1.4.0
- Create virtual environment for Pytorch by Anaconda
- Install pytorch (various versions)
conda create -n seokeon_py36_torch041 python=3.6
source activate seokeon_py36_torch041
conda install pytorch=0.4.1 cuda90 -c pytorch
source deactivate
conda create -n seokeon_py27_torch041 python=2.7
source activate seokeon_py27_torch041
conda install pytorch=0.4.1 cuda90 -c pytorch
source deactivate
conda create -n seokeon_py36_torch031 python=3.6
source activate seokeon_py36_torch031
conda install pytorch=0.3.1 cuda90 -c pytorch
source deactivate
conda create -n seokeon_py27_torch031 python=2.7
source activate seokeon_py27_torch031
conda install pytorch=0.3.1 cuda90 -c pytorch
source deactivate
- Install pytorch (latest version)
conda install pytorch-cpu torchvision-cpu -c pytorch
conda install pytorch torchvision cudatoolkit=8.0 -c pytorch
conda install pytorch torchvision cudatoolkit=9.0 -c pytorch
conda install pytorch torchvision cudatoolkit=10.0 -c pytorch
- Install pycharm using Snaps
sudo snap install pycharm-community --classic
# or sudo snap install pycharm-professional --classic
- pop up the message "pycharm-community 2017.3.3 from 'jetbrains' installed"
pycharm-community
-
Make new project
-
Environmental settings
- File
- Settings
- Project interpreter
- Select the virtual environment where you installed pytorch
-
Change pycharm keymap
- File
- Settings
- Keymap
- comment : ctrl+R
- run : F5
- debug : F6
- resume program : F7
- close (Editor Tabs) : ctrl+W
- Quick Evaluate Expression : Shift+F8
- Evaluate Expression : F8
- step over : F10
- step into : F11
- step out : shift + F11
- Toggle line breakpoint : F12
- Code->Folding->Collapse All: Ctrl+Alt+minus
-
Run/Debug configurations
- Python interpreter (python directory in the virtual environment)
- Environment variables (optional.. for TensorFlow)
- Add (Name : LD_LIBRARY_PATH / Value : /usr/local/cuda-9.0/lib64)
- Working directory
- /home/user_name/PycharmpProjects/your_project/
- In the vitual environment (anaconda)
conda activate pytorch36
pip install scipy
pip install sacred
pip install matplotlib
pip install opencv-python
pip install pillow
pip install numpy
conda install -c pytorch torchvision
conda install -c anaconda pyyaml
conda deactivate
-
Caution! An error may occur
-
Install Wine and environmental settings
sudo apt install wine-stable cabextract
WINEARCH=win32 WINEPREFIX=~/.wine wine wineboot
wget https://raw.githubusercontent.com/Winetricks/winetricks/master/src/winetricks
chmod +x winetricks
./winetricks --optout
-
Select the default winprefix
-
Install a Windows DLL or component
-
Select (gdiplus, riched30, wmp9, msxml6)
-
Copy Gulim font (window to ubuntu)
-
copy C:/Windows/Fonts/gulim.ttf (or ttc) -> ~/.wine/drive_c/windows/Fonts (using cp -i or something else)
chmod 644 ~/.wine/drive_c/windows/Fonts/gulim.ttf
gedit ~/.wine/system.reg
Change from
"MS Shell Dlg"="Tahoma"
"MS Shell Dlg 2"="Tahoma"
to
"MS Shell Dlg"="Gulim"
"MS Shell Dlg 2"="Gulim"
- Install kakaoTalk
winecfg
- Confirm the version of window
- Download the file (version check) [Download]
- Install it
wine-stable KakaoTalk_Setup.exe
- Change language setting
gedit ~/.local/share/applications/wine/Programs/KakaoTalk/KakaoTalk.desktop
Change from
Exec=env WINEPREFIX="/home/ubuntu/.wine" wine-stable C:\\\\windows\\\\command\\\\start.exe /Unix /home/ubuntu/.wine/dosdevices/c:/ProgramData/Microsoft/Windows/Start\\ Menu/Programs/KakaoTalk/KakaoTalk.lnk
to
Exec=env WINEPREFIX="/home/ubuntu/.wine" LANG="ko_KR.UTF-8" wine-stable C:\\\\windows\\\\command\\\\start.exe /Unix /home/ubuntu/.wine/dosdevices/c:/ProgramData/Microsoft/Windows/Start\\ Menu/Programs/KakaoTalk/KakaoTalk.lnk
-
Notably, LANG="ko_KR.UTF-8" is Only added
-
Solving the problem of broken font
cd "/home/ubuntu/.wine/dosdevices/c:/Program Files/Kakao/KakaoTalk"
LANG="ko_KR.UTF-8" wine-stable KakaoTalk.exe
- Setting system tray
sudo apt install gnome-shell-extension-top-icons-plus
- Extensions
- Topicons plus (check!)
sudo apt-get install imwheel
imwheel
sudo gedit /etc/X11/imwheel/startup.conf
- Change ‘IMWHEEL_START=0’ to ‘IMWHEEL_START=1’
gedit ~/.imwheelrc
-
Copy all the contents in [ref]
-
Add below commands (the number 3 means wheel speed)
".*"
None, Up, Button4, 3
None, Down, Button5, 3
- End
imwheel -k
- compress files : zip -r zipname.zip filename
- unzip : tar -xvzf "file name"
- unzip all 'zip' files :
for file in `ls *.zip`; do unzip "${file}" -d "${file:0:-4}"; done
for file in `ls *.zip`; do unzip "${file}" -d "./"; done
for file in `ls *.rar`; do unrar e "${file}"; done
-
zip by 7z:
- sudo apt-get install p7zip-full
- 7z a data.7z data.txt (zip)
- 7z x data.7z (unzip, )
-
remove folder : rm -rf "folder name"
-
remove 해당 디렉토리 내의 특정파일 삭제: find . -type f -name "*.zip" -exec rm {} ; link
-
make folder : mkdir "folder name"
-
copy folder : cp -r "folder a" "folder b"
-
copy folder (w/o overwrite) : rsync -a -v --ignore-existing src dst
-
move folder : mv "folder a" "folder b"
-
list subdirectories :
tree -d -L 1
find src -mindepth 2 -maxdepth 3 -type d > list.txt
-
Visualize gpu situation (auto update)
nvidia-smi -l 1
- Caution! Removing "Alt" function from "Han/Eng" key on the keyboard. [reference]
xmodmap -e 'remove mod1 = Alt_R'
xmodmap -e 'keycode 108 = Hangul'
Option -> Region & Language -> Korean (Hangul) -> Option -> Shortkey (Alt+R -> Hangul)
-
Chrome auto scroll [reference]
-
Symbolic (soft) link :
ln -s target_path(old) link_path(new)
ln -s ../../../DB/reid/old_DB ./
하면./
위치에old_DB
라는 폴더 생성ln -sf ../../../DB/reid/old_DB ./new_DB
하면./
위치에new_DB
라는 폴더 생성
-
Count the number of files in the certain path
find /path/to -type f | wc -l
-
Count the number of files in the present path
find . -type f | wc -l
-
Remove conda env
conda env remove -n ENV_NAME
-
Personal PATH
export PPATH="/path/to"
in ~/.bashrc -
Add 'new document' option when right clicking
touch ~/Templates/Empty\ Document
-
Change ":" to "," in filename
find . -name "*:*" -exec rename 's|:|,|g' {} \;
- sudo apt install rename
-
GPU temperature
- nvidia-smi -q -d temperature -l 1
-
우분투 APT repository 제거하기 [ref]
- sudo add-apt-repository --remove ppa:~~~~~ (지우길 원하는 프로그램 이름명)
-
터미널 열었을 때 (base) 있는 경우
- conda config --show | grep auto_activate_base
- conda config --set auto_activate_base False
-
디스크 용량 체크
- df -h
-
폴더 내의 용량 체크
- du -h
-
빠른 삭제
- sudo rm -r -f /path/
-
Compression
- (install) sudo apt-get install p7zip-full
- (compress) 7z a /created_file_name/ /folder_name or */
- (check) 7z l /7z_file/
- (extract) 7z e /7z_file/
-
Memory check
- watch -d free / watch -n 1 free
-
파일 수 세기
- find . -type f | wc -l
-
해당 조건 파일 옮기기
- find path_A -name '*.jpg' -exec mv -t path_B {} +
- maxdepth 1
-
Pycharm deployment (다른 컴퓨터의 pycharm 에서 코드 돌리는 법)
- original code git commit (or copy your code to new com)
- git clone repo (or paste the code)
- Settings -> Build, Execution, Deployment -> new connection (+)
- Connection: SFTP -> SSH Configuration (make new IP) -> Test connection
- Mappings: Local path (new com), Deployment path (server com) => same folder
- If failed at Test connection, in server com or apply VPN (university)
- sudo apt update -y
- sudo apt-get install openssh-server
- sudo service ssh start
- sudo service openssh-server start
- Project -> Python Interpreter -> add (+) -> SSH Interpreter -> Existing server configuration -> Interpreter (server -> anaconda -> env -> bin -> python) -> sudo -> Sync folder (setting remote path) -> check automatically upload
- Setting configuration
-
pip 이용한 설치중 Cannot uninstall '~~~' 에러발생
- sudo pip install pwntools 대신에 sudo pip install --ignore-installed pwntools
-
ppt FHD 동영상 저장 방법 (https://m.blog.naver.com/PostView.nhn?blogId=radiobj5&logNo=220345624061&proxyReferer=https:%2F%2Fwww.google.com%2F)
- 동영상 녹음 후에
- Alt + F11
- 삽입 -> 모듈
Sub MkVideo()
If ActivePresentation.CreateVideoStatus <> ppMediaTaskStatusInProgress Then
ActivePresentation.CreateVideo FileName:=Environ("USERPROFILE") & "\Desktop\test.mp4", _
UseTimingsAndNarrations:=True, _
VertResolution:=1080, _
FramesPerSecond:=25, _
Quality:=100
Else:
MsgBox "There is another conversion to video in progress"
End If
End Sub
-
F5
-
server 관리
- ssh 명령어 short-cut관리: gedit ~/.ssh/config
- ssh 바로 접근: ssh username@ip_adress
- id 생성
- 서버 root계정으로 로그인
- sudo adduser id_name
- CUDA 설정
- vim ~/.bashrc
- Cuda path
- export PATH="/usr/local/cuda-10.0/bin:$PATH"
- export LD_LIBRARY_PATH="/usr/local/cuda-10.0/lib64:$LD_LIBRARY_PATH"
- Anaconda path
- export PATH="/home/ROOT_NAME/anaconda3/bin:$PATH"
- export LD_LIBRARY_PATH="/home/ROOT_NAME/anaconda3/lib64:$LD_LIBRARY_PATH"
- Cuda path
- source ~/.bashrc
- vim ~/.bashrc
- error control
- anaconda 가상환경 설정시 permission error: sudo chmod -R 777 anaconda3
- slurm에서 sbatch 안먹을때 (sinfo 입력했을때 drain인경우)
- 돌아가는 job 있을때: scontrol update nodename=node10 state=resume
- 돌아가는 job 없을때: scontrol update nodename=node10 state=idle
- 서버에서 다른 cuda version 쓰고 싶을 때 (10.2 기준)
- CUDA 파일 다운로드: wget http://developer.download.nvidia.com/compute/cuda/10.2/Prod/local_installers/cuda_10.2.89_440.33.01_linux.run
- CUDA 설치: sudo sh cuda_10.2.89_440.33.01_linux.run
- EULA? [accept]
- Unsupported configuration? [yes]
- Graphic driver? [no] (important)
- Cuda toolkit? [yes]
- run with 'sudo'? [yes]
- symbolic link? [no] (directly connect individual version by bashrc)
- Cuda samples? [no]
- CUDNN 파일 다운로드
- CUDNN 설치
- CUDNN 이동
- move "lib64 and include folders" to
/home/choi/cudnn/$version
- move "lib64 and include folders" to
- link
vim ~/.bashrc
export PATH="/usr/local/cuda-10.2/bin:$PATH"
export LD_LIBRARY_PATH="/usr/local/cuda-9.0/lib64:$LD_LIBRARY_PATH"
export LD_LIBRARY_PATH="/home/choi/cudnn/$version/lib64:$LD_LIBRARY_PATH"
source ~/.bashrc
- 남은 용량 확인 (현재 폴더에서 각각 폴더가 차지하고 있는 양 확인)
- du -sh *
-
conda activate 가 안되고 source activate만 되는 경우
- source ~/anaconda3/etc/profile.d/conda.sh
-
nvidia graphic driver 다른 버전 쓰고 싶을 때 (https://codechacha.com/ko/install-nvidia-driver-ubuntu/)
- 자동 버전 설치
- sudo add-apt-repository ppa:graphics-drivers/ppa
- sudo apt update
- sudo ubuntu-drivers autoinstall
- sudo reboot
- 기존 삭제(만약 기존 설치된 프로그램과 출동한다면): sudo apt --purge autoremove nvidia*
- 자동 버전 설치
-
Automatic mixed precision 쓰는 법 (https://hoya012.github.io/blog/Image-Classification-with-Mixed-Precision-Training-PyTorch-Tutorial/)
- CUDA10.1 버전 이상만 pytorch1.6 지원
- CUDA10.1 버전 이상 설치 / CUDNN 설치 (필수인지는 확실하지 않음)
- conda create -n seokeon_torch16 python=3.6
- conda activate seokeon_torch16
- conda install pytorch torchvision cudatoolkit=10.1 -c pytorch (10.2도 가능)
- nvidia graphic driver 업그레이드
- 코드에서 변경해야 하는 부분
- AMP_flag = True
- if AMP_flag:
- self.scaler = torch.cuda.amp.GradScaler() [추가된부분]
- dataloader iteration 내부에서
- if AMP_flag:
- with torch.cuda.amp.autocast(): [추가된부분]
- outputs = self.model(inputs)
- loss = self.criterion(outputs, labels)
- self.optimizer.zero_grad()
- self.scaler.scale(loss).backward() [변경된부분]
- self.scaler.step(self.optimizer) [변경된부분]
- self.scaler.update() [변경된부분]
- with torch.cuda.amp.autocast(): [추가된부분]
- else:
- outputs = self.model(inputs)
- loss = self.criterion(outputs, labels)
- self.optimizer.zero_grad()
- loss.backward()
- self.optimizer.step()
- if AMP_flag:
-
Mount 완련!!
- bootloader가 켜지지 않고 grup gnu terminal 창만 나오는 경우ㅜ
- ubuntu booting USB로 부팅(try ubuntu without installing)
- 인터넷연결
- sudo add-apt-repository ppa:yannubuntu/boot-repair
- sudo apt-get update
- sudo apt-get install -y boot-repair
- boot-repair
- Click Recommended repair
- gpt to mbr (https://www.linuxtopic.com/2017/02/convert-partition-table-gpt-to-mbr-in.html)
- install gdisk
- gdisk /dev/sda
- command: r
- Recovery/transformation command? g
- (MBR command: p)
- MBR command: w
- coverted 1 paritions. Finalize and exit? (Y/N): y
- (command: w)
- reboot
- 4TB이상 하드를 사서 리눅스를 설치할꺼면? (http://blog.naver.com/PostView.nhn?blogId=5bpa&logNo=220460531819)
- 하드디스크 처음 마운트 (https://seongkyun.github.io/others/2019/03/05/hdd_mnt/)
- sudo fdisk -l 에서 하드 확인
- 용량이 2TB 이하인 경우
- sudo fdisk /dev/sda
- command: n
- select: p
- Partition number: 1
- First sector: (enter)
- Last sector: (enter) -> created a new partition ~~
- command: p
- command: w
- format
- sudo mkfs.ext4 /dev/sda1
- uuid 확인
- 해당 disk의 UUID 복사
- mount
- sudo mkdir /mnt/directory-to-mount
- sudo vim /etc/fstab
- UUID=~~~~~ /directory-to-mount ext4 defaults 0 0
- 맨 아랫줄에 입력
- sudo mount -a
- df -h (마운트 확인)
- symbolic link
- sudo ln -s /directory-to-mount /home/choi/
- cd ~/directory-to-mount
- sudh chmod 777 ~/directory-to-mount
- Change mount position
lsblk # check disk position sudo xdg-open /etc/fstab # change disk position
Add /dev/sdc /mnt/hard1 ntfs-3g defaults 0 2 (??? not completed)
- Unrecognized mount option "default"
- vim /etc/fstab
- 에서 default라고 적힌것 defaults로
- hard가 read-only 인경우 (window caches 에 의해서)
- https://askubuntu.com/questions/462381/cant-mount-ntfs-drive-the-disk-contains-an-unclean-file-system
- https://hidekuma.github.io/ec2/ubuntu/linux/remount-ebs/
- $ cat /proc/mounts 에서 해당 디스크 ro로 되어있는지 확인
- $ sudo umount /dev/sdXY
- $ sudo ntfsfix /dev/sdXY (두번?)
- $ sudo mount -o rw /dev/sdXY
- bootloader가 켜지지 않고 grup gnu terminal 창만 나오는 경우ㅜ
-
7zip 압축
- 7z a kernel.7z kernel/ -v50m
- 50mb 분할 압축
- kernel.7z.001, kernel.7z.002 파일 생성
-
7zip 해제
- 7z x kernel.7z.001 -aoa
출처: https://ysh0222.tistory.com/26 [Sangho Yoon]
출처: https://ysh0222.tistory.com/26 [Sangho Yoon]
-
다른 서버 폴더 접근
- 폴더 gui에서
- connect to server
- sftp://ID@ip
-
가상환경이나 현재 python에 pip으로 설치된 패키지 목력정보 만들기
- pip freeze > requirement.txt (문서생성)
- pip install -r requirements.txt (pip install)
-
Git 관련
- 명령어로 연동
- git clone ~~~
- 파일 수정
- git add --all
- git commit -m "Fix ~~ or Update ~~"
- git push origin master
- pycharm 과 연동 link
- Web에서 repository 생성
- VCS>Get from Version Control
- Github ID login
- Repository 연결해서 원하는 폴더에 다운로드
- 원하는 파일 옮겨닮기 (외부에서 옮기면 따로 pycharm에서 add해야하므로 pycharm의 프로젝트 창으로 파일 바로 옮겨줌)
- commit
- push
- 다른 github repository에 pull request를 하는 방법
- Fork the repository
-
- local 작업
- git clone repository
- cd repository
- Create a new branch
- git branch new-branch
- git checkout new-branch
- or
- git checkout -b new-branch
- If you want to switch back to master
- git checkout master
- Make change locally
- Modify an existing file or add a new file
- git add filename.md or git add -A
- git commit -m "Fixed documentation typos" or git config --global core.editor "nano" (장문을 쓰길 원하면, nano대신 vim가능)
- git status (생략가능, verify 단계)
- git push --set-upstream origin new-branch (forked repository가 변경되어 있을 것이다)
-
- In repositoy
- 원하는 파일 수정
-
- Pull request (1 or 2 수행 이후)
- Repository-> Pull request->New pull request
- 명령어로 연동
-
conda env 복사 붙여넣기 link
- anaconda version이 다르면 에러날수도
- conda activate 이름
- conda env export > environment.yaml
- python --version (Python 3.6.6) 인 경우
- conda create --name [이름] python=3.6 (environment.yml 에 있는 이름과 동일, 복사 하고자 하는 서버에 같은 파이선 버전 생성)
- conda activate [이름]
- conda env create environment.yml
- conda 생성 안하고 바로할경우
- conda env create --prefix <your_conda_env_path> -f environment.yml (envs/이름) 까지