Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Introduce PvaAbstractions and use them in SeqTable #522

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 7 additions & 1 deletion src/ophyd_async/core/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,9 +61,14 @@
soft_signal_rw,
wait_for_value,
)
from ._signal_backend import RuntimeSubsetEnum, SignalBackend, SubsetEnum
from ._signal_backend import (
RuntimeSubsetEnum,
SignalBackend,
SubsetEnum,
)
from ._soft_signal_backend import SignalMetadata, SoftSignalBackend
from ._status import AsyncStatus, WatchableAsyncStatus, completed_status
from ._table import Table
from ._utils import (
DEFAULT_TIMEOUT,
CalculatableTimeout,
Expand Down Expand Up @@ -152,6 +157,7 @@
"CalculateTimeout",
"NotConnected",
"ReadingValueCallback",
"Table",
"T",
"WatcherUpdate",
"get_dtype",
Expand Down
12 changes: 12 additions & 0 deletions src/ophyd_async/core/_device_save_loader.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
from bluesky.plan_stubs import abs_set, wait
from bluesky.protocols import Location
from bluesky.utils import Msg
from pydantic import BaseModel

from ._device import Device
from ._signal import SignalRW
Expand All @@ -18,6 +19,12 @@ def ndarray_representer(dumper: yaml.Dumper, array: npt.NDArray[Any]) -> yaml.No
)


def pydantic_model_abstraction_representer(
dumper: yaml.Dumper, model: BaseModel
) -> yaml.Node:
return dumper.represent_data(model.model_dump(mode="python"))


class OphydDumper(yaml.Dumper):
def represent_data(self, data: Any) -> Any:
if isinstance(data, Enum):
Expand Down Expand Up @@ -134,6 +141,11 @@ def save_to_yaml(phases: Sequence[Dict[str, Any]], save_path: str) -> None:
"""

yaml.add_representer(np.ndarray, ndarray_representer, Dumper=yaml.Dumper)
yaml.add_multi_representer(
BaseModel,
pydantic_model_abstraction_representer,
Dumper=yaml.Dumper,
)

with open(save_path, "w") as file:
yaml.dump(phases, file, Dumper=OphydDumper, default_flow_style=False)
Expand Down
15 changes: 14 additions & 1 deletion src/ophyd_async/core/_signal_backend.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,13 @@
from abc import abstractmethod
from typing import TYPE_CHECKING, ClassVar, Generic, Literal, Optional, Tuple, Type
from typing import (
TYPE_CHECKING,
ClassVar,
Generic,
Literal,
Optional,
Tuple,
Type,
)

from ._protocol import DataKey, Reading
from ._utils import DEFAULT_TIMEOUT, ReadingValueCallback, T
Expand All @@ -11,6 +19,11 @@ class SignalBackend(Generic[T]):
#: Datatype of the signal value
datatype: Optional[Type[T]] = None

@classmethod
@abstractmethod
def datatype_allowed(cls, dtype: type):
"""Check if a given datatype is acceptable for this signal backend."""

#: Like ca://PV_PREFIX:SIGNAL
@abstractmethod
def source(self, name: str) -> str:
Expand Down
32 changes: 30 additions & 2 deletions src/ophyd_async/core/_soft_signal_backend.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,15 +2,20 @@

import inspect
import time
from abc import ABCMeta
from collections import abc
from enum import Enum
from typing import Dict, Generic, Optional, Tuple, Type, Union, cast, get_origin

import numpy as np
from bluesky.protocols import DataKey, Dtype, Reading
from pydantic import BaseModel
from typing_extensions import TypedDict

from ._signal_backend import RuntimeSubsetEnum, SignalBackend
from ._signal_backend import (
RuntimeSubsetEnum,
SignalBackend,
)
from ._utils import DEFAULT_TIMEOUT, ReadingValueCallback, T, get_dtype

primitive_dtypes: Dict[type, Dtype] = {
Expand Down Expand Up @@ -94,7 +99,7 @@ def make_initial_value(self, datatype: Optional[Type[T]]) -> T:
class SoftEnumConverter(SoftConverter):
choices: Tuple[str, ...]

def __init__(self, datatype: Union[RuntimeSubsetEnum, Enum]):
def __init__(self, datatype: Union[RuntimeSubsetEnum, Type[Enum]]):
if issubclass(datatype, Enum):
self.choices = tuple(v.value for v in datatype)
else:
Expand Down Expand Up @@ -122,17 +127,36 @@ def make_initial_value(self, datatype: Optional[Type[T]]) -> T:
return cast(T, self.choices[0])


class SoftPydanticModelConverter(SoftConverter):
def __init__(self, datatype: Type[BaseModel]):
self.datatype = datatype

def write_value(self, value):
if isinstance(value, dict):
return self.datatype(**value)
return value


def make_converter(datatype):
is_array = get_dtype(datatype) is not None
is_sequence = get_origin(datatype) == abc.Sequence
is_enum = inspect.isclass(datatype) and (
issubclass(datatype, Enum) or issubclass(datatype, RuntimeSubsetEnum)
)

is_pydantic_model = (
inspect.isclass(datatype)
# Necessary to avoid weirdness in ABCMeta.__subclasscheck__
and isinstance(datatype, ABCMeta)
evalott100 marked this conversation as resolved.
Show resolved Hide resolved
and issubclass(datatype, BaseModel)
)

if is_array or is_sequence:
return SoftArrayConverter()
if is_enum:
return SoftEnumConverter(datatype)
if is_pydantic_model:
return SoftPydanticModelConverter(datatype)

return SoftConverter()

Expand All @@ -145,6 +169,10 @@ class SoftSignalBackend(SignalBackend[T]):
_timestamp: float
_severity: int

@classmethod
def datatype_allowed(cls, datatype: Type) -> bool:
return True # Any value allowed in a soft signal

def __init__(
self,
datatype: Optional[Type[T]],
Expand Down
58 changes: 58 additions & 0 deletions src/ophyd_async/core/_table.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
import numpy as np
from pydantic import BaseModel, ConfigDict, model_validator


class Table(BaseModel):
"""An abstraction of a Table of str to numpy array."""

model_config = ConfigDict(validate_assignment=True, strict=False)

@classmethod
def row(cls, sub_cls, **kwargs) -> "Table":
arrayified_kwargs = {
field_name: np.concatenate(
(
(default_arr := field_value.default_factory()),
np.array([kwargs[field_name]], dtype=default_arr.dtype),
)
)
for field_name, field_value in sub_cls.model_fields.items()
}
return sub_cls(**arrayified_kwargs)

def __add__(self, right: "Table") -> "Table":
"""Concatenate the arrays in field values."""

assert isinstance(right, type(self)), (
f"{right} is not a `Table`, or is not the same "
f"type of `Table` as {self}."
)

return type(self)(
**{
field_name: np.concatenate(
(getattr(self, field_name), getattr(right, field_name))
)
for field_name in self.model_fields
}
)

@model_validator(mode="after")
def validate_arrays(self) -> "Table":
first_length = len(next(iter(self))[1])
assert all(
len(field_value) == first_length for _, field_value in self
), "Rows should all be of equal size."

if not all(
np.issubdtype(
self.model_fields[field_name].default_factory().dtype, field_value.dtype
)
for field_name, field_value in self
):
raise ValueError(
f"Cannot construct a `{type(self).__name__}`, "
"some rows have incorrect types."
)

return self
2 changes: 1 addition & 1 deletion src/ophyd_async/core/_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -145,7 +145,7 @@ def get_dtype(typ: Type) -> Optional[np.dtype]:


def get_unique(values: Dict[str, T], types: str) -> T:
"""If all values are the same, return that value, otherwise return TypeError
"""If all values are the same, return that value, otherwise raise TypeError

>>> get_unique({"a": 1, "b": 1}, "integers")
1
Expand Down
32 changes: 29 additions & 3 deletions src/ophyd_async/epics/signal/_aioca.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,10 @@
import inspect
import logging
import sys
from dataclasses import dataclass
from enum import Enum
from math import isnan, nan
from typing import Any, Dict, List, Optional, Type, Union
from typing import Any, Dict, List, Optional, Sequence, Type, Union, get_origin

import numpy as np
from aioca import (
Expand All @@ -24,6 +25,7 @@
DEFAULT_TIMEOUT,
NotConnected,
ReadingValueCallback,
RuntimeSubsetEnum,
SignalBackend,
T,
get_dtype,
Expand Down Expand Up @@ -211,7 +213,8 @@ def make_converter(
raise TypeError(f"{pv} has type [{pv_dtype}] not [{dtype}]")
return CaArrayConverter(pv_dbr, None)
elif pv_dbr == dbr.DBR_ENUM and datatype is bool:
# Database can't do bools, so are often representated as enums, CA can do int
# Database can't do bools, so are often representated as enums,
# CA can do int
pv_choices_len = get_unique(
{k: len(v.enums) for k, v in values.items()}, "number of choices"
)
Expand Down Expand Up @@ -240,7 +243,7 @@ def make_converter(
f"{pv} has type {type(value).__name__.replace('ca_', '')} "
+ f"not {datatype.__name__}"
)
return CaConverter(pv_dbr, None)
return CaConverter(pv_dbr, None)


_tried_pyepics = False
Expand All @@ -256,8 +259,31 @@ def _use_pyepics_context_if_imported():


class CaSignalBackend(SignalBackend[T]):
_ALLOWED_DATATYPES = (
bool,
int,
float,
str,
Sequence,
Enum,
RuntimeSubsetEnum,
np.ndarray,
)

@classmethod
def datatype_allowed(cls, datatype: Optional[Type]) -> bool:
stripped_origin = get_origin(datatype) or datatype
if datatype is None:
return True

return inspect.isclass(stripped_origin) and issubclass(
stripped_origin, cls._ALLOWED_DATATYPES
)
coretl marked this conversation as resolved.
Show resolved Hide resolved

def __init__(self, datatype: Optional[Type[T]], read_pv: str, write_pv: str):
self.datatype = datatype
if not CaSignalBackend.datatype_allowed(self.datatype):
raise TypeError(f"Given datatype {self.datatype} unsupported in CA.")
self.read_pv = read_pv
self.write_pv = write_pv
self.initial_values: Dict[str, AugmentedValue] = {}
Expand Down
52 changes: 51 additions & 1 deletion src/ophyd_async/epics/signal/_p4p.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,14 +3,17 @@
import inspect
import logging
import time
from abc import ABCMeta
from dataclasses import dataclass
from enum import Enum
from math import isnan, nan
from typing import Any, Dict, List, Optional, Sequence, Type, Union
from typing import Any, Dict, List, Optional, Sequence, Type, Union, get_origin

import numpy as np
from bluesky.protocols import DataKey, Dtype, Reading
from p4p import Value
from p4p.client.asyncio import Context, Subscription
from pydantic import BaseModel

from ophyd_async.core import (
DEFAULT_TIMEOUT,
Expand Down Expand Up @@ -253,6 +256,19 @@ def get_datakey(self, source: str, value) -> DataKey:
return _data_key_from_value(source, value, dtype="object")


class PvaPydanticModelConverter(PvaConverter):
def __init__(self, datatype: BaseModel):
self.datatype = datatype

def value(self, value: Value):
return self.datatype(**value.todict())

def write_value(self, value: Union[BaseModel, Dict[str, Any]]):
if isinstance(value, self.datatype):
return value.model_dump(mode="python")
return value


class PvaDictConverter(PvaConverter):
def reading(self, value):
ts = time.time()
Expand Down Expand Up @@ -348,6 +364,15 @@ def make_converter(datatype: Optional[Type], values: Dict[str, Any]) -> PvaConve
raise TypeError(f"{pv} has type {typ.__name__} not {datatype.__name__}")
return PvaConverter()
elif "NTTable" in typeid:
if (
datatype
and inspect.isclass(datatype)
and
# Necessary to avoid weirdness in ABCMeta.__subclasscheck__
isinstance(datatype, ABCMeta)
and issubclass(datatype, BaseModel)
):
return PvaPydanticModelConverter(datatype)
return PvaTableConverter()
elif "structure" in typeid:
return PvaDictConverter()
Expand All @@ -358,8 +383,33 @@ def make_converter(datatype: Optional[Type], values: Dict[str, Any]) -> PvaConve
class PvaSignalBackend(SignalBackend[T]):
_ctxt: Optional[Context] = None

_ALLOWED_DATATYPES = (
bool,
int,
float,
str,
Sequence,
np.ndarray,
Enum,
RuntimeSubsetEnum,
BaseModel,
dict,
)

@classmethod
def datatype_allowed(cls, datatype: Optional[Type]) -> bool:
stripped_origin = get_origin(datatype) or datatype
if datatype is None:
return True
return inspect.isclass(stripped_origin) and issubclass(
stripped_origin, cls._ALLOWED_DATATYPES
)

def __init__(self, datatype: Optional[Type[T]], read_pv: str, write_pv: str):
self.datatype = datatype
if not PvaSignalBackend.datatype_allowed(self.datatype):
raise TypeError(f"Given datatype {self.datatype} unsupported in PVA.")

self.read_pv = read_pv
self.write_pv = write_pv
self.initial_values: Dict[str, Any] = {}
Expand Down
Loading
Loading