Skip to content

Commit

Permalink
updated docs
Browse files Browse the repository at this point in the history
  • Loading branch information
mattsignorelli committed Jul 10, 2024
1 parent 460d5bf commit 1e60ad9
Showing 1 changed file with 9 additions and 4 deletions.
13 changes: 9 additions & 4 deletions tao/doc/command-list.tex
Original file line number Diff line number Diff line change
Expand Up @@ -2107,9 +2107,9 @@ \subsection{show chromaticity}

If no universe is given, the current default universe (\sref{s:universe}) is used.

The \vn{-taylor} switch will show the Taylor series for the three normal mode tunes and spin tune
as functions of the phase space coordinates. The computation uses complex series. The imaginary part
should be zero (or very small). The spin Taylor series is only computed when spin tracking is on.
The \vn{-taylor} switch will show the Taylor series for the three normal mode tunes as functions
of the phase space coordinates. The computation uses complex series. The imaginary part should be
zero (or very small).


%% show constraints --------------------------------------------------------------
Expand Down Expand Up @@ -3013,7 +3013,7 @@ \subsection{show spin}
Syntax:
\begin{example}
show spin \{-element \{<ref_ele_name>\} <ele_name>\} \{-flip_n_axis\} \{-g_map\}
\{-ignore_kinetic <ele_list>\} \{-isf\}
\{-ignore_kinetic <ele_list>\} \{-isf\} \{-spin_tune\}
\{-l_axis <lx>, <ly>, <lz>\} \{-n_axis <nx>, <ny>, <nz>\}
\{-x_zero <ele_list>\} \{-y_zero <ele_list>\} \{-z_zero <ele_list>\}
\end{example}
Expand Down Expand Up @@ -3067,6 +3067,11 @@ \subsection{show spin}
for the three components of the spin $(S_x, S_y, S_z)$. The independent variables are the six orbital
phase space coordinates $(x, p_x, y, p_y, z, p_z)$.

The \vn{-spin_tune} switch, if present, will print the amplitude-dependent spin tune. The output will
be a Taylor series in the phasor's basis, i.e. $x_{\pm k} = \sqrt{J_k}\exp{\pm i\phi_k}$. For example
the monomial ``[1 1 0 0 0 0]'' corresponds to $J_a$, and ``[1 1 2 2 3 3]'' corresponds to
$J_aJ_b^2J_c^3$.

The \vn{-x_zero}, \vn{-y_zero}, and \vn{-z_zero} options are for testing if supressing certain terms
in the linear part of the spin transport map for a set of elements selected by the user will
significantly affect the polarization. This is discussed in the section ``\vn{Linear dn/dpz
Expand Down

0 comments on commit 1e60ad9

Please sign in to comment.