Skip to content

Commit

Permalink
Added plots module with orthographic and grid plots (#45)
Browse files Browse the repository at this point in the history
* Added plots module

* removed unnecessary voxel_sizes parameter

* Apply suggestions from code review

Co-authored-by: Alessandro Felder <alessandrofelder@users.noreply.github.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix typos and linting

* hard-code 1-99% as vmin-vmax default values

---------

Co-authored-by: Alessandro Felder <alessandrofelder@users.noreply.github.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
  • Loading branch information
3 people authored Oct 28, 2024
1 parent 03df9e9 commit f9ce842
Showing 1 changed file with 340 additions and 0 deletions.
340 changes: 340 additions & 0 deletions brainglobe_template_builder/plots.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,340 @@
from pathlib import Path
from typing import Literal

import numpy as np
from brainglobe_space import AnatomicalSpace
from matplotlib import pyplot as plt


def plot_orthographic(
img: np.ndarray,
anat_space: str = "ASR",
show_slices: tuple[int, int, int] | None = None,
mip_attenuation: float = 0.01,
save_path: Path | None = None,
**kwargs,
) -> tuple[plt.Figure, np.ndarray]:
"""Plot image volume in three orthogonal views, plus a surface rendering.
The function assumes isotropic voxels (otherwise the proportions of the
image will be distorted). The surface rendering is a maximum intensity
projection (MIP) along the vertical (superior-inferior) axis.
Parameters
----------
img : np.ndarray
Image volume to plot.
anat_space : str, optional
Anatomical space of the image volume according to the Brainglobe
definition (origin and order of axes), by default "ASR".
show_slices : tuple, optional
Which slice to show per dimension. If None (default), show the middle
slice along each dimension.
mip_attenuation : float, optional
Attenuation factor for the MIP, by default 0.01.
A value of 0 means no attenuation.
save_path : Path, optional
Path to save the plot, by default None (no saving).
**kwargs
Additional keyword arguments to pass to ``matplotlib.pyplot.imshow``.
Returns
-------
tuple[plt.Figure, np.ndarray]
Matplotlib figure and axes objects
"""

space = AnatomicalSpace(anat_space)
vertical_axis = space.get_axis_idx("vertical")

# Get middle slices if not specified
if show_slices is None:
slices_list = [s // 2 for s in img.shape]
else:
slices_list = list(show_slices)

# Pad the image with zeros to make it cubic
# so projections along different axes have the same size
img, pad_sizes = _pad_with_zeros(img, target=max(img.shape))
slices_list = [s + pad_sizes[i] for i, s in enumerate(slices_list)]

# Compute (attenuated) MIP along the vertical axis
mip, mip_label = _compute_attenuated_mip(
img, vertical_axis, mip_attenuation
)

# Create figure with 4 subplots (3 orthogonal views + MIP)
fig, axs = plt.subplots(1, 4, figsize=(14, 4))
views = [img.take(slc, axis=i) for i, slc in enumerate(slices_list)]
views.append(mip)
axis_labels = [*space.axis_labels, space.axis_labels[vertical_axis]]
section_names = [s.capitalize() for s in space.sections] + [mip_label]

kwargs = _set_imshow_defaults(img, kwargs)

for j, (section, labels) in enumerate(zip(section_names, axis_labels)):
ax = axs[j]
ax.imshow(views[j], **kwargs)
ax.set_title(section)
ax.set_ylabel(labels[0])
ax.set_xlabel(labels[1])
ax = _clear_spines_and_ticks(ax)
plt.tight_layout()

if save_path:
_save_and_close_figure(
fig, save_path.parent, save_path.name.split(".")[0]
)
return fig, axs


def plot_grid(
img: np.ndarray,
anat_space="ASR",
section: Literal["frontal", "horizontal", "sagittal"] = "frontal",
n_slices: int = 12,
save_path: Path | None = None,
**kwargs,
) -> tuple[plt.Figure, np.ndarray]:
"""Plot image volume as a grid of slices along a given anatomical section.
Image contrast is auto-adjusted to 1-99% of range unless overridden by
``vmin`` and ``vmax`` passed as keyword arguments.
Parameters
----------
img : np.ndarray
Image volume to plot.
anat_space : str, optional
Anatomical space of the image volume according to the Brainglobe
definition (origin and order of axes), by default "ASR".
section : str, optional
Section to show, must be one of "frontal", "horizontal", or "sagittal",
by default "frontal".
n_slices : int, optional
Number of slices to show, by default 12. Slices will be evenly spaced,
starting from the first and ending with the last slice. If a higher
value than the number of slices in the image is chosen, all slices
are shown.
save_path : Path, optional
Path to save the plot, by default None (no saving).
**kwargs
Additional keyword arguments to pass to ``matplotlib.pyplot.imshow``.
Returns
-------
tuple[plt.Figure, np.ndarray]
Matplotlib figure and axes objects
"""
space = AnatomicalSpace(anat_space)
section_to_axis = { # Mapping of section names to space axes
"frontal": "sagittal",
"horizontal": "vertical",
"sagittal": "frontal",
}
axis_idx = space.get_axis_idx(section_to_axis[section])

# Ensure n_slices is not greater than the number of slices in the image
n_slices = min(n_slices, img.shape[axis_idx])
# ensure first and last slices are included
show_slices = np.linspace(0, img.shape[axis_idx] - 1, n_slices, dtype=int)

# Get slices along the specified axis and arrange them in a grid
grid_img = _grid_from_slices(
[img.take(slc, axis=axis_idx) for slc in show_slices]
)

# Plot the grid image
fig, ax = plt.subplots(1, 1, figsize=(12, 12))
kwargs = _set_imshow_defaults(img, kwargs)
ax.imshow(grid_img, **kwargs)

section_name = section.capitalize()
ax.set_title(f"{section_name} slices")
ax.set_xlabel(space.axis_labels[axis_idx][1])
ax.set_ylabel(space.axis_labels[axis_idx][0])
ax = _clear_spines_and_ticks(ax)
plt.tight_layout()

if save_path:
_save_and_close_figure(
fig, save_path.parent, save_path.name.split(".")[0]
)
return fig, ax


def _compute_attenuated_mip(
img: np.ndarray, axis: int, attenuation_factor: float
) -> tuple[np.ndarray, str]:
"""Compute the maximum intensity projection (MIP) with attenuation.
If the image is zero-padded, attenuation is only applied within the
non-zero region along the specified axis.
Parameters
----------
img : np.ndarray
Image volume.
axis : int
Axis along which to compute the MIP.
attenuation_factor : float
Attenuation factor for the MIP. 0 means no attenuation.
Returns
-------
tuple[np.ndarray, str]
MIP image and label. The label is "MIP" if no attenuation is applied,
and "MIP (attenuated)" otherwise.
"""

mip_label = "MIP"

if attenuation_factor < 0:
raise ValueError("Attenuation factor must be non-negative.")

if attenuation_factor < 1e-6:
# If the factor is too small, skip attenuation
mip = np.max(img, axis=axis)
return mip, mip_label

# Find the non-zero bounding box along the specified axis
other_axes = tuple(i for i in range(img.ndim) if i != axis)
non_zero_mask = np.any(img != 0, axis=other_axes)
non_zero_indices = np.nonzero(non_zero_mask)[0]
start, end = non_zero_indices[0], non_zero_indices[-1] + 1

# Trim the image along the attenuation axis (get rid of zero-padding)
slices = [slice(None)] * img.ndim
slices[axis] = slice(start, end)
trimmed_img = img[tuple(slices)]

# Apply attenuation to the trimmed image
attenuation = np.exp(
-attenuation_factor * np.arange(trimmed_img.shape[axis])
)
attenuation_shape = [1] * trimmed_img.ndim
attenuation_shape[axis] = trimmed_img.shape[axis]
attenuation = attenuation.reshape(attenuation_shape)
attenuated_img = trimmed_img.astype(np.float32) * attenuation

# Compute and return the attenuated MIP
mip = np.max(attenuated_img, axis=axis)
mip_label += " (attenuated)"

return mip, mip_label


def _save_and_close_figure(fig: plt.Figure, plots_dir: Path, filename: str):
"""Save figure in both PNG and PDF formats and close it."""
fig.savefig(plots_dir / f"{filename}.png")
fig.savefig(plots_dir / f"{filename}.pdf")
plt.close(fig)


def _clear_spines_and_ticks(ax: plt.Axes) -> plt.Axes:
"""Clear spines and ticks from a matplotlib axis."""
ax.set_xticks([])
ax.set_yticks([])
for spine in ax.spines.values():
spine.set_visible(False)
return ax


def _set_imshow_defaults(img: np.ndarray, kwargs: dict) -> dict:
"""Set default values for imshow keyword arguments.
These apply only if the user does not provide them explicitly.
"""
missing_keys = [key for key in ("vmin", "vmax") if key not in kwargs]
if missing_keys:
defaults = _auto_adjust_contrast(img)
for key in missing_keys:
kwargs.setdefault(key, defaults[key])

kwargs.setdefault("cmap", "gray")
kwargs.setdefault("aspect", "equal")
return kwargs


def _grid_from_slices(slices: list[np.ndarray]) -> np.ndarray:
"""Create a grid image from a list of 2D slices.
The number of rows is automatically determined based on the square root
of the number of slices, rounded up.
Parameters
----------
slices : list[np.ndarray]
List of 2D slices to concatenate.
Returns
-------
np.ndarray
A 2D image, with the input slices arranged in a grid.
"""

n_slices = len(slices)
slice_height, slice_width = slices[0].shape

# Form image mosaic grid by concatenating slices
n_rows = int(np.ceil(np.sqrt(n_slices)))
n_cols = int(np.ceil(n_slices / n_rows))
grid_img = np.zeros(
(n_rows * slice_height, n_cols * slice_width),
)
for i, slice in enumerate(slices):
row = i // n_cols
col = i % n_cols
grid_img[
row * slice_height : (row + 1) * slice_height,
col * slice_width : (col + 1) * slice_width,
] = slice

return grid_img


def _pad_with_zeros(
img: np.ndarray, target: int = 512
) -> tuple[np.ndarray, tuple[int, int, int]]:
"""Pad the volume with zeros to reach the target size in all dimensions."""
pad_sizes = [(target - s) // 2 for s in img.shape]
padded_img = np.pad(
img,
(
(pad_sizes[0], pad_sizes[0]),
(pad_sizes[1], pad_sizes[1]),
(pad_sizes[2], pad_sizes[2]),
),
mode="constant",
)
return padded_img, tuple(pad_sizes)


def _auto_adjust_contrast(img: np.ndarray) -> dict:
"""Adjust contrast of an image using percentile-based scaling.
Uses the 1-99% range of the image intensity values to set vmin and vmax."""
# Mask near-zero voxels to exclude background
if np.issubdtype(img.dtype, np.integer):
background_threshold = 1
else:
background_threshold = np.finfo(img.dtype).eps
brain_mask = img > background_threshold

# Hard-coded percentiles for default contrast adjustment
lower_percentile = 1
upper_percentile = 99

# Exclude bright artifacts
vmax = np.percentile(img[brain_mask], upper_percentile)
artifact_mask = img <= vmax
combined_mask = brain_mask & artifact_mask

# Compute vmin and vmax
vmin = np.percentile(img[combined_mask], lower_percentile)
vmax = np.percentile(img[combined_mask], upper_percentile)

return {"vmin": vmin, "vmax": vmax}

0 comments on commit f9ce842

Please sign in to comment.