Version 2.1.12
Highlights
This release is excellent. We have made important improvements.
- We provide dozens of random sampling in NumPy which are not supportted in JAX, such as
brainpy.math.random.bernoulli
,
brainpy.math.random.lognormal
,brainpy.math.random.binomial
,brainpy.math.random.chisquare
,brainpy.math.random.dirichlet
,brainpy.math.random.geometric
,brainpy.math.random.f
,brainpy.math.random.hypergeometric
,brainpy.math.random.logseries
,brainpy.math.random.multinomial
,brainpy.math.random.multivariate_normal
,brainpy.math.random.negative_binomial
,brainpy.math.random.noncentral_chisquare
,brainpy.math.random.noncentral_f
,brainpy.math.random.power
,brainpy.math.random.rayleigh
,brainpy.math.random.triangular
,brainpy.math.random.vonmises
,brainpy.math.random.wald
,brainpy.math.random.weibull
- make efficient checking on numerical values. Instead of direct
id_tap()
checking which has large overhead, currentlybrainpy.tools.check_erro_in_jit()
is highly efficient. - Fix
JaxArray
operator errors onNone
- improve oo-to-function transformation speeds
io
works:.save_states()
and.load_states()
What's Changed
- support dtype setting in array interchange functions by @chaoming0625 in #209
- fix #144: operations on None raise errors by @chaoming0625 in #210
- add tests and new functions for random sampling by @c-xy17 in #213
- feat: fix
io
for brainpy.Base by @chaoming0625 in #211 - update advanced tutorial documentation by @chaoming0625 in #212
- fix #149 (dozens of random samplings in NumPy) and fix JaxArray op errors by @chaoming0625 in #216
- feat: efficient checking on numerical values by @chaoming0625 in #217
Full Changelog: V2.1.11...V2.1.12