-
Notifications
You must be signed in to change notification settings - Fork 51
Outline
François edited this page May 14, 2013
·
4 revisions
Definitely not up-to-date list of sections and contents of the code deployed in the course. Short listing of examples first, longer contents follows.
- [011] R: calc, objects [012] RStudio: packages, graphs [013] Hello World!
1_hello.R
- [020] addition, logic [021] vectors, matrixes (grades) [022] factors and variables (real grades, BMI) [023] BMI
2_bmi.R
- [030] functions [031] conditionals; probability distributions [032] iteration [033] HHI calculations
3_hhi.R
- [040] WDI (API) [041] Daily Kos (Google Docs), QOG (CSV, PDF), scraping [042] CSI (reshape) and BJS data (ZIP, selective CSV, reshape) [043] Aggregation with Shor's data (XLSX) and DW-NOMINATE (Stata, aggregate)
4_congress.R
- [080] Olympics (forecasting) [081] OECD Better Life (correlation) [082]
- Bartels
- Hibbs (OLS; partial derivatives, predictions, residuals)
- AJR log-settler mortality (partial corr, logged coefs, dummies) http://www-personal.umich.edu/~albouy/ http://www-personal.umich.edu/~albouy/AJRreinvestigation/AJRrev.pdf http://jeffsachs.org/2012/12/reply-to-acemoglu-and-robinsons-response-to-my-book-review/ [083] IMF WEO (outliers)
8_imf.R
-
[090] ICM Polls (dates, plots) [091] R & R [092] Quandl [093] Piketty & Saez (XLS, aggregate)
-
[100] Maps [101] Airports (geocoded) [102] [103] Simon Jackman, US two-party vote-shares
syllabus.pdf
01_intro.R
02_readings.R
- Introduction
- How we got there
- What is data analysis?
- Who is this for
- Course outline
- Course requirements
- Disclosure
- Readings
- Course handbooks
- Additional readings
- Tutorials
- Blogs
- Setup
- Computer equipment
- Computer skills
- Installing R
- Installation
- Commands
- Syntax
- Assignment
- Exit
- Installing RStudio
- Installation
- Interface
- Running scripts
- Setting the working directory
- Tab auto-completion
- Packages
- Drawing and saving plots
- Help pages
- Practice session
- Folder architecture
- "Hello, R World" (redux)
- RStudio interface basics
- Command line tricks
- Data objects
- R functions
- R mathematics
- Vectors
- Help pages
- Workspace commands
- Disk files
- Quitting R
20_basics.R
21_syntax.R
22_vectors.R
23_objects.R
- Objects
- Vectors and matrixes
- Variables and factors
- Practice
- a
- b
- c
30_math.R
31_functions.R
32_loops.R
33_proba.R
- Functions
- i
- i
- i
- a
- b
- c
40_data.R
41_dataio.R
42_reshaping.R
43_scraping.R
- Data
- i
- i
- i
- a
- b
- c
50_clusters.R
51_heatmaps.R
52_pca.R
53_kmeans.R
60_distributions.R
61_descr.R
62_pdf.R
63_ecdf.R
70_hyptests.R
71_ci.R
72_ttest.R
73_prtest.R
80_lin.R
81_scatterplots.R
82_regression.R
-
83_vwreg.R
-
83_vwreg_ggplot2.R
by David Sparks -
83_vwreg.R
by Felix Schönbrodt
-
90_ts.R
-
91_lags.R
-
91_beijing_pollution.R
adapted from Roger D. Peng and David Ruau
-
-
92_smoothing.R
- example: smoothing trends in assault deaths in the United States
- dataset: Bureau of Justice Statistics (
htus8008
)
100_maps.R
101_choropleth.R
102_gmaps.R
-
110_networks.R
-
110_plotg.R
adapted from Moritz Marbach
-
111_influence.R
112_twitter.R
120_data.R