Skip to content

cccddd77/gpu-arch-microbenchmark

 
 

Repository files navigation

GPU Arch Microbenchmark

Prerequisites

  1. install turingas compiler

    git clone --recursive git@github.com:sjfeng1999/gpu-arch-microbenchmark.git
    cd turingas
    python setup.py install

Usage

  1. mkdir build && cd build
  2. cmake .. && make
  3. python ../compile_sass.py -arch=(70|75|80)
  4. ./(memory_latency|reg_bankconflict|...)

Microbenchmark

1. Memory Latency

Device Latency Turing RTX-2070 (TU104)
Global Latency cycle 1000 ~ 1200
TLB Latency cycle 472
L2 Latency cycle 236
L1 Latency cycle 32
Shared Latency cycle 23
Constant Latency cycle 448
Constant L2 Latency cycle 62
Constant L1 Latency cycle 4
  • const L1-cache is as fast as register.

2. Memory Bandwidth

  1. memory bandwidth within one thread
Device Bandwidth Turing RTX-2070
Global LDG.128 GB/s 194.12
Global LDG.64 GB/s 140.77
Global LDG.32 GB/s 54.18
Shared LDS.128 GB/s 152.96
Shared LDS.64 GB/s 30.58
Shared LDS.32 GB/s 13.32
  1. global memory bandwidth within (64 block * 256 thread)
Device Bandwidth Turing RTX-2070
LDG.32 GB/s 246.65
LDG.32 Group1 Stride1 GB/s 118.73(2X)
LDG.32 Group2 Stride2 GB/s 119.08(2X)
LDG.32 Group4 Stride4 GB/s 117.11(2X)
LDG.32 Group8 Stride8 GB/s 336.27
LDG.64 GB/s 379.24
LDG.64 Group1 Stride1 GB/s 126.40(2X)
LDG.64 Group2 Stride2 GB/s 124.51(2X)
LDG.64 Group4 Stride4 GB/s 398.84
LDG.64 Group8 Stride8 GB/s 371.28
LDG.128 GB/s 391.83
LDG.128 Group1 Stride1 GB/s 125.25(2X)
LDG.128 Group2 Stride2 GB/s 402.55
LDG.128 Group4 Stride4 GB/s 394.22
LDG.128 Group8 Stride8 GB/s 396.10

3. Cache Linesize

Device Linesize Turing RTX-2070(TU104)
L2 Linesise bytes 64
L1 Linesize bytes 32
Constant L2 Linesise bytes 256
Constant L1 Linesize bytes 32

4. Reg Bankconflict

Instruction CPI conflict without conflict reg reuse double reuse
FFMA cycle 3.516 2.969 2.938 2.938
IADD3 cycle 3.031 2.062 2.031 2.031

5. Shared Bankconflict

Memory Load Latency Turing RTX-2070 (TU104)
Single cycle 23
Vector2 X 2 cycle 27
Conflict Strided cycle 41
Conlict-Free Strided cycle 32

Instruction Efficiency

Roadmap

  • warp schedule
  • L1/L2 cache n-way k-set

Citation

  • Jia, Zhe, et al. "Dissecting the NVIDIA volta GPU architecture via microbenchmarking." arXiv preprint arXiv:1804.06826 (2018).
  • Jia, Zhe, et al. "Dissecting the NVidia Turing T4 GPU via microbenchmarking." arXiv preprint arXiv:1903.07486 (2019).
  • Yan, Da, Wei Wang, and Xiaowen Chu. "Optimizing batched winograd convolution on GPUs." Proceedings of the 25th ACM SIGPLAN symposium on principles and practice of parallel programming. 2020. (turingas)

About

Dissecting NVIDIA GPU Architecture

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Cuda 62.8%
  • Sass 32.9%
  • Python 2.3%
  • CMake 2.0%