-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Chris Free
authored and
Chris Free
committed
Jan 18, 2022
1 parent
974f470
commit 3e30039
Showing
8 changed files
with
1,999 additions
and
17 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
251 changes: 251 additions & 0 deletions
251
code/cost_search/Step1c_reforecast_with_sensitivity_analysis_costs_that_change_results.R
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,251 @@ | ||
|
||
# Clear workspace | ||
rm(list = ls()) | ||
|
||
# Setup | ||
################################################################################ | ||
|
||
# Packages | ||
library(raster) | ||
library(ggplot2) | ||
library(tidyverse) | ||
|
||
# Directories | ||
codedir <- "code" | ||
sppdir <- "data/species/data" | ||
indir <- "/Volumes/GoogleDrive/Shared drives/emlab/projects/current-projects/blue-paper-2/data/output/raw" | ||
outdir <- "/Volumes/GoogleDrive/Shared drives/emlab/projects/current-projects/blue-paper-2/data/output/cost_search" | ||
plotdir <- "/Volumes/GoogleDrive/Shared drives/emlab/projects/current-projects/blue-paper-2/data/output/cost_search_plots" | ||
|
||
# Read aquacast function | ||
source(file.path(codedir, "calc_costs_v2.R")) | ||
|
||
# Read species data | ||
load(file.path(sppdir, "aquaculture_species_key_20cages.Rdata")) | ||
|
||
# Brackish ISSCAAPs | ||
brackish_isscaaps <- c("Freshwater molluscs", "Miscellaneous diadromous fishes", | ||
"Miscellaneous freshwater fish", "River eels", "Shads", | ||
"Sturgeons, paddlefishes", "Tilapias and other cichlids") | ||
|
||
# Not lonline bivalves | ||
bad_bivalve_isscaaps <- c("Clams, cockles, arkshells", "Pearls, mother-of-pearl, shells", "Scallops, pectens") | ||
|
||
# Reduce data | ||
data <- data %>% | ||
filter(!isscaap %in% c(brackish_isscaaps, bad_bivalve_isscaaps)) | ||
|
||
|
||
|
||
# Build function | ||
################################################################################ | ||
|
||
# Function | ||
rcp <- "rcp26" | ||
species <- data[1,] | ||
cost_scalar <- 1.2 | ||
periods <- c("2021-2030", "2051-2060", "2091-2100") | ||
reforecast <- function(species, rcp, periods, price_scalar=1, cost_scalar=1, outdir=F, plot=T){ | ||
|
||
# 1. Read data | ||
############################ | ||
|
||
# Param | ||
spp <- species$species | ||
type <- ifelse(species$class=="Bivalvia", "Bivalve", "Finfish") | ||
print(spp) | ||
|
||
# Read suitable cells | ||
print("... reading and transforming habitat suitability") | ||
filename_base <- paste(toupper(rcp), gsub(" ", "_", spp), sep="_") | ||
filename_in <- paste0(filename_base, ".Rds") | ||
vcells_orig <- readRDS(file.path(indir, filename_in)) | ||
periods_avail <- sort(unique(vcells_orig$period)) | ||
|
||
# Convert to raster | ||
vcells <- vcells_orig %>% | ||
# Simplify | ||
select(period, x, y, viable) %>% | ||
# Spread to XY-ZZZ | ||
spread(key="period", value="viable") %>% | ||
# Convert to raster | ||
rasterFromXYZ(crs = crs(ras_temp)) %>% | ||
# Project raster | ||
projectRaster(to=ras_temp) | ||
|
||
# 2. Extract data | ||
############################ | ||
|
||
# Growth and harvest parameters | ||
linf_cm <- species$linf_cm | ||
k <- species$k | ||
harvest_cm <- species$harvest_cm | ||
harvest_g <- species$harvest_g | ||
harvest_yr <- species$harvest_yr | ||
harvest_kg_m3 <- species$harvest_kg_m3 | ||
harvest_cm_ft <- species$harvest_cm_ft | ||
nstocked <- species$nstocked | ||
nstocked_adj <- species$nstocked_adj | ||
a <- species$a | ||
b <- species$b | ||
fcr <- species$fcr | ||
price_usd_mt <- species$price_usd_mt_isscaap * price_scalar | ||
|
||
|
||
# 3. Farm design | ||
############################ | ||
|
||
# Finfish farm design | ||
if(type=="Finfish"){ | ||
# Finfish farm design | ||
farm_design <- tibble(type="finfish", | ||
area_sqkm=1, | ||
ncages=20, | ||
cage_vol_m3=9000) %>% | ||
# Calculate number stocked | ||
mutate(tot_m3=ncages * cage_vol_m3, | ||
tot_kg=tot_m3*harvest_kg_m3, | ||
nstocked=tot_kg*1000/harvest_g, | ||
nstocked_adj=nstocked) | ||
} | ||
|
||
# Bivalve farm design | ||
if(type=="Bivalve"){ | ||
farm_design <- tibble(type="bivalve", | ||
area_sqkm=1, | ||
nlines=species$lines_n, | ||
line_rope_ft=2109, | ||
harvest_cm_ft=harvest_cm_ft) %>% | ||
mutate(nstocked = nlines * line_rope_ft * (harvest_cm_ft / harvest_cm), | ||
nstocked_adj=nstocked_adj) | ||
} | ||
|
||
# Check number of stocked | ||
if(all.equal(nstocked, farm_design$nstocked)!=T){ | ||
stop("Number of stocked individuals calculated doesn't match value in key.") | ||
} | ||
|
||
# Calculate yield per year (kg/yr) for 1 sqkm farm | ||
farm_kg_yr <- harvest_g/1000 * farm_design$nstocked / harvest_yr | ||
farm_mt_yr <- farm_kg_yr / 1000 | ||
|
||
# Check farm production | ||
if(all.equal(species$prod_mt_yr, farm_mt_yr)!=T){ | ||
stop("Farm production doesn't match value in key.") | ||
} | ||
|
||
# 4. Production | ||
############################ | ||
|
||
# Calculate annual harvest per cell | ||
print("... mapping production potential") | ||
cell_sqkm <- 100 | ||
cell_nfarms <- cell_sqkm / farm_design$area_sqkm | ||
cell_prod_mt_yr <- farm_mt_yr * cell_nfarms | ||
|
||
# Calculate annual revenue per cell | ||
cell_revenue_usd_yr <- cell_prod_mt_yr * price_usd_mt | ||
|
||
# Check cell revenue | ||
if(all.equal(species$revenue_usd_yr*cell_nfarms*price_scalar, cell_revenue_usd_yr)!=T){ | ||
stop("Cell revenue doesn't match value in key.") | ||
} | ||
|
||
|
||
# 5. Calculate costs | ||
#################################### | ||
|
||
# Calculate costs and profits | ||
print("... calculating costs and profits") | ||
cell_cost_usd_yr <- calc_costs_v2(farm_design, cell_prod_mt_yr, fcr, vcells, harvest_yr) * cost_scalar | ||
|
||
# 6. Calculate profits | ||
#################################### | ||
|
||
# Build final data frame | ||
data_df <- cell_cost_usd_yr %>% | ||
# Convert to dataframe | ||
as.data.frame(xy=T) %>% | ||
setNames(c("x", "y", periods_avail)) %>% | ||
gather(key="period", value="cost_usd_yr", 3:ncol(.)) %>% | ||
# Reduce to cells with costs | ||
filter(!is.na(cost_usd_yr)) %>% | ||
# Add variables | ||
mutate(viable=1, | ||
prod_mt_yr=cell_prod_mt_yr, | ||
revenue_usd_yr=cell_revenue_usd_yr, | ||
profits_usd_yr=revenue_usd_yr - cost_usd_yr) %>% | ||
# Arrange | ||
select(period, x, y, viable, prod_mt_yr, revenue_usd_yr, cost_usd_yr, profits_usd_yr) | ||
|
||
|
||
# 5. Export and plot | ||
#################################### | ||
|
||
# If exporting | ||
outfile_basename <- paste(toupper(rcp), gsub(" ", "_", spp), "cost_search", sep="_", cost_scalar) | ||
if(outdir!=F){ | ||
saveRDS(data_df, file.path(outdir, paste0(outfile_basename, ".Rds"))) | ||
} | ||
|
||
# If plotting | ||
if(plot==T){ | ||
|
||
# Build stats data frame | ||
stats <- data_df %>% | ||
filter(profits_usd_yr>0) %>% | ||
group_by(period) %>% | ||
summarize(area_sqkm_mil=sum(viable)*100/1e6, | ||
prod_mt_yr_mil=sum(prod_mt_yr)/1e6, | ||
profits_usd_yr_tril=sum(profits_usd_yr)/1e12) %>% | ||
ungroup() | ||
|
||
# Plot | ||
g <- ggplot(stats, aes(x=period, y=area_sqkm_mil)) + | ||
geom_bar(stat="identity") + | ||
labs(x="", y="Profitable area (millions of sqkm)", title=species$comm_name) + | ||
theme_bw() + | ||
theme( axis.text.y = element_text(angle = 90, hjust = 0.5) ) | ||
print(g) | ||
|
||
} | ||
|
||
} | ||
|
||
|
||
|
||
# Reforecast using function | ||
################################################################################ | ||
|
||
# Cost scalars | ||
cost_scalars <- c(2.1, 2.7) | ||
|
||
# Build key | ||
spp_cost_key <-purrr::map_df(cost_scalars, function(x){ | ||
|
||
# Add cost scalar | ||
data1 <- data %>% | ||
mutate(cost_scalar=x) | ||
|
||
}) | ||
|
||
|
||
# Loop through species and cost scalars | ||
for(i in 1:nrow(spp_cost_key)){ | ||
species <- spp_cost_key[i,] | ||
cost_scalar <- spp_cost_key$cost_scalar[i] | ||
periods <- c("2021-2030", "2051-2060", "2091-2100") | ||
output <- reforecast(species=species, periods=periods, rcp="rcp26", cost_scalar=cost_scalar, outdir=outdir, plot=T) | ||
output <- reforecast(species=species, periods=periods, rcp="rcp45", cost_scalar=cost_scalar, outdir=outdir, plot=F) | ||
output <- reforecast(species=species, periods=periods, rcp="rcp60", cost_scalar=cost_scalar, outdir=outdir, plot=F) | ||
output <- reforecast(species=species, periods=periods, rcp="rcp85", cost_scalar=cost_scalar, outdir=outdir, plot=F) | ||
} | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
Oops, something went wrong.