Skip to content

Releases: chengtan9907/OpenSTL

Weather-5-625-Visualization

21 Jun 22:13
df7e291
Compare
Choose a tag to compare

We provide visualization figures of various weather prediction methods on Weather Bench (single variable). You can plot your own visualization with tested results (e.g., work_dirs/exp_name/saved) by vis_video.py. Note that --vis_dirs denotes visualize all experimental folders under the path, and --vis_channel can select the channel for visualization. For example, run plotting with the script:

python tools/visualizations/vis_video.py -d weather_t2m_5_625 -w work_dirs/exp_name --index 0 --save_dirs fig_w_t2m_5_625_vis

Video-Visualization

21 Jun 21:56
df7e291
Compare
Choose a tag to compare

We provide visualization figures of various video prediction methods on various benchmarks. You can plot your own visualization with tested results (e.g., work_dirs/exp_name/saved) by vis_video.py. Note that --vis_dirs denotes visualize all experimental folders under the path, and --vis_channel can select the channel for visualization. For example, run plotting with the script:

python tools/visualizations/vis_video.py -d mmnist -w work_dirs/exp_name --index 0 --save_dirs fig_mmnist_vis
  • We provide GIF visualizations of experiments in configs/mmnist for MMNIST (64x64 resolutions).
  • We provide GIF visualizations of experiments in configs/mfmnist for Moving FMNIST (64x64 resolutions).
  • We provide GIF visualizations of experiments in configs/mmnist_cifar for MMNIST-CIFAR (64x64 resolutions).
  • We provide GIF visualizations of experiments in configs/kitticaltech for KittiCaltech (128x160 resolutions).
  • We provide GIF visualizations of experiments in configs/kth for KTH Action (128x128 resolutions).
  • We provide GIF visualizations of experiments in configs/human for Human 3.6M (256x256 resolutions).

Traffic-Visualization

21 Jun 22:01
df7e291
Compare
Choose a tag to compare

We provide visualization figures of various traffic prediction methods on various benchmarks. You can plot your own visualization with tested results (e.g., work_dirs/exp_name/saved) by vis_video.py. Note that --vis_dirs denotes visualize all experimental folders under the path, and --vis_channel can select the channel for visualization. For example, run plotting the first channel of TaxiBJ with the script:

python tools/visualizations/vis_video.py -d taxibj -w work_dirs/exp_name --vis_channel 0 --index 0 --save_dirs fig_taxibj_vis
  • We provide GIF visualizations of experiments in configs/taxibj for TaxiBJ (32x32 resolutions).

V0.3.0-Weather-5-625-Weights

20 Jun 22:08
Compare
Choose a tag to compare

We provide temperature prediction benchmark results on the popular WeatherBench dataset (temperature prediction t2m) using $12\rightarrow 12$ frames prediction setting. Metrics (MSE, MAE, SSIM, pSNR) of the best models are reported in three trials. Parameters (M), FLOPs (G), and V100 inference FPS (s) are also reported for all methods. All methods are trained by Adam optimizer with Cosine Annealing scheduler (no warmup and min lr is 1e-6).

STL Benchmarks on Temperature (t2m)

Method Setting Params FLOPs FPS MSE MAE RMSE Download
ConvLSTM 50 epoch 14.98M 136G 46 1.521 0.7949 1.233 model | log
E3D-LSTM 50 epoch 51.09M 169G 35 1.592 0.8059 1.262 model | log
PhyDNet 50 epoch 3.09M 36.8G 177 285.9 8.7370 16.91 model | log
PredRNN 50 epoch 23.57M 278G 22 1.331 0.7246 1.154 model | log
PredRNN++ 50 epoch 38.31M 413G 15 1.634 0.7883 1.278 model | log
MIM 50 epoch 37.75M 109G 126 1.784 0.8716 1.336 model | log
MAU 50 epoch 5.46M 39.6G 237 1.251 0.7036 1.119 model | log
PredRNNv2 50 epoch 23.59M 279G 22 1.545 0.7986 1.243 model | log
IncepU (SimVPv1) 50 epoch 14.67M 8.03G 160 1.238 0.7037 1.113 model | log
gSTA (SimVPv2) 50 epoch 12.76M 7.01G 504 1.105 0.6567 1.051 model | log
ViT 50 epoch 12.41M 7.99G 432 1.146 0.6712 1.070 model | log
Swin Transformer 50 epoch 12.42M 6.88G 581 1.143 0.6735 1.069 model | log
Uniformer 50 epoch 12.02M 7.45G 465 1.204 0.6885 1.097 model | log
MLP-Mixer 50 epoch 11.10M 5.92G 713 1.255 0.7011 1.119 model | log
ConvMixer 50 epoch 1.13M 0.95G 1705 1.267 0.7073 1.126 model | log
Poolformer 50 epoch 9.98M 5.61G 722 1.156 0.6715 1.075 model | log
ConvNeXt 50 epoch 10.09M 5.66G 689 1.277 0.7220 1.130 model | log
VAN 50 epoch 12.15M 6.70G 523 1.150 0.6803 1.072 model | log
HorNet 50 epoch 12.42M 6.84G 517 1.201 0.6906 1.096 model | log
MogaNet 50 epoch 12.76M 7.01G 416 1.152 0.6665 1.073 model | log
TAU 50 epoch 12.22M 6.70G 511 1.162 0.6707 1.078 model | log

STL Benchmarks on Temperature (r)

Method Setting Params FLOPs FPS MSE MAE RMSE Download
ConvLSTM 50 epoch 14.98M 136G 46 35.146 4.012 5.928 model | log
E3D-LSTM 50 epoch 51.09M 169G 35 36.534 4.100 6.044 model | log
PhyDNet 50 epoch 3.09M 36.8G 177 239.00 8.975 15.46 model | log
PredRNN 50 epoch 23.57M 278G 22 37.611 4.096 6.133 model | [log](https://github.com/chengtan9907/OpenSTL/releases/download/weather-5-625-weights/wea...
Read more

V0.3.0-TaxiBJ-Weights

18 Jun 23:50
Compare
Choose a tag to compare

We provide traffic benchmark results on the popular TaxiBJ dataset using $4\rightarrow 4$ frames prediction setting. Metrics (MSE, MAE, SSIM, pSNR) of the best models are reported in three trials. Parameters (M), FLOPs (G), and V100 inference FPS (s) are also reported for all methods. All methods are trained by Adam optimizer with Cosine Annealing scheduler (5 epochs warmup and min lr is 1e-6) and single GPU.

STL Benchmarks on TaxiBJ

Method Setting Params FLOPs FPS MSE MAE SSIM PSNR Download
ConvLSTM-S 50 epoch 14.98M 20.74G 815 0.3358 15.32 0.9836 39.45 model | log
E3D-LSTM* 50 epoch 50.99M 98.19G 60 0.3427 14.98 0.9842 39.64 model | log
PhyDNet 50 epoch 3.09M 5.60G 982 0.3622 15.53 0.9828 39.46 model | log
PredNet 50 epoch 12.5M 0.85G 5031 0.3516 15.91 0.9828 39.29 model | log
PredRNN 50 epoch 23.66M 42.40G 416 0.3194 15.31 0.9838 39.51 model | log
MIM 50 epoch 37.86M 64.10G 275 0.3110 14.96 0.9847 39.65 model | log
MAU 50 epoch 4.41M 6.02G 540 0.3268 15.26 0.9834 39.52 model | log
PredRNN++ 50 epoch 38.40M 62.95G 301 0.3348 15.37 0.9834 39.47 model | log
PredRNN.V2 50 epoch 23.67M 42.63G 378 0.3834 15.55 0.9826 39.49 model | log
DMVFN 50 epoch 3.54M 0.057G 6347 3.3954 45.52 0.8321 31.14 model | log
SimVP+IncepU 50 epoch 13.79M 3.61G 533 0.3282 15.45 0.9835 39.45 model | log
SimVP+gSTA-S 50 epoch 9.96M 2.62G 1217 0.3246 15.03 0.9844 39.71 model | log
TAU 50 epoch 9.55M 2.49G 1268 0.3108 14.93 0.9848 39.74 model | log

Benchmark of MetaFormers on SimVP (MetaVP)

MetaFormer Setting Params FLOPs FPS MSE MAE SSIM PSNR Download
SimVP+IncepU 50 epoch 13.79M 3.61G 533 0.3282 15.45 0.9835 39.45 model | log
SimVP+gSTA-S 50 epoch 9.96M 2.62G 1217 0.3246 15.03 0.9844 39.71 model | log
ViT 50 epoch 9.66M 2.80G 1301 0.3171 15.15 0.9841 39.64 model | log
Swin Transformer 50 epoch 9.66M 2.56G 1506 0.3128 15.07 0.9847 39.65 model | log
Uniformer 50 epoch 9.52M 2.71G 1333 0.3268 15.16 0.9844 39.64 model | log
MLP-Mixer 50 epoch 8.24M 2.18G 1974 0.3206 15.37 0.9841 39.49 model | log
ConvMixer 50 epoch 0.84M 0.23G 4793 0.3634 15.63 0.9831 39.41 model | log
Poolformer 50 epoch 7.75M 2.06G 1827 0.3273 15.39 0.9840 39.46 model | log
ConvNeXt 50 epoch 7.84M 2.08G 1918 0.3106 14.90 0.9845 39.76 model | log
VAN 50 epoch 9.48M 2.49G 1273 0.3125 14.96 0.9848 39.72 model | log
HorNet 50 epoch 9.68M 2.54G 1350 0.3186 15.01 0.9843 39.66 model | log
MogaNet 50 epoch 9.96M 2.61G 1005 0.3114 15.06 0.9847 39.70 model | log
TAU 50 epoch 9.55M 2.49G 1268 0.3108 14.93 0.9848 39.74 model | log

V0.3.0-MMNIST-Weights

18 Jun 22:24
Compare
Choose a tag to compare

We provide benchmark results on the popular Moving MNIST dataset using $10\rightarrow 10$ frames prediction setting following PredRNN. Metrics (MSE, MAE, SSIM, pSNR) of the best models are reported in three trials. Parameters (M), FLOPs (G), and V100 inference FPS (s) are also reported for all methods. All methods are trained by Adam optimizer with Onecycle scheduler and single GPU.

  • For a fair comparison of different methods, we provide config files in configs/mmnist.
  • We also benchmark popular Metaformer architectures on SimVP with training times of 200-epoch and 2000-epoch. We provide config files in configs/mmnist/simvp.

STL Benchmarks on MMNIST

Method Setting Params FLOPs FPS MSE MAE SSIM PSNR Download
ConvLSTM-S 200 epoch 15.0M 56.8G 113 29.80 90.64 0.9288 22.10 model | log
ConvLSTM-L 200 epoch 33.8M 127.0G 50 27.78 86.14 0.9343 22.44 model | log
PredNet 200 epoch 12.5M 8.6G 659 161.38 201.16 0.7783 14.33 model | log
PhyDNet 200 epoch 3.1M 15.3G 182 28.19 78.64 0.9374 22.62 model | log
PredRNN 200 epoch 23.8M 116.0G 54 23.97 72.82 0.9462 23.28 model | log
PredRNN++ 200 epoch 38.6M 171.7G 38 22.06 69.58 0.9509 23.65 model | log
MIM 200 epoch 38.0M 179.2G 37 22.55 69.97 0.9498 23.56 model | log
MAU 200 epoch 4.5M 17.8G 201 26.86 78.22 0.9398 22.76 model | log
E3D-LSTM 200 epoch 51.0M 298.9G 18 35.97 78.28 0.9320 21.11 model | log
CrevNet 200 epoch 5.0M 270.7G 10 30.15 86.28 0.9350 model | log
PredRNN.V2 200 epoch 23.9M 116.6G 52 24.13 73.73 0.9453 23.21 model | log
DMVFN 200 epoch 3.5M 0.2G 1145 123.67 179.96 0.8140 16.15 model | log
SimVP+IncepU 200 epoch 58.0M 19.4G 209 32.15 89.05 0.9268 37.97 model | log
SimVP+gSTA-S 200 epoch 46.8M 16.5G 282 26.69 77.19 0.9402 38.35 model | log
TAU 200 epoch 44.7M 16.0G 283 24.60 71.93 0.9454 23.19 model | log
ConvLSTM-S 2000 epoch 15.0M 56.8G 113 22.41 73.07 0.9480 23.54 model | log
PredNet 2000 epoch 12.5M 8.6G 659 31.85 90.01 0.9273 21.85 model | log
PhyDNet 2000 epoch 3.1M 15.3G 182 20.35 61.47 0.9559 24.21 model | log
PredRNN 2000 epoch 23.8M 116.0G 54 26.43 77.52 0.9411 22.90 model | log
PredRNN++ 2000 epoch 38.6M 171.7G 38 14.07 48.91 0.9698 26.37 model | log
MIM 2000 epoch 38.0M 179.2G 37 14.73 52.31 0.9678 25.99 model | log
MAU 2000 epoch 4.5M 17.8G 201 22.25 67.96 0.9511 23.68 model | log
E3D-LSTM 2000 epoch 51.0M 298.9G 18 24.07 77.49 0.9436 23.19 model | log
PredRNN.V2 2000 epoch 23.9M 116.6G 52 17.26 57.22 0.9624 25.01 model | log
SimVP+IncepU 2000 epoch 58.0M 19.4G 209 21.15 64.15 0.9536 23.99 model | log
SimVP+gSTA-S 2000 epoch 46.8M 16.5G 282 15.05 49.80 0.9675 25.97 model | log
TAU 2000 epoch 44.7M 16.0G 283 15.69 51.46 0.9661 25.71 model | log

Benchmark of MetaFormers Based on SimVP (MetaVP)

MetaVP Setting Params FLOPs FPS MSE MAE SSIM PSNR Download
IncepU (SimVPv1) 200 epoch 58.0...
Read more

V0.3.0-MMNIST-CIFAR-Weights

18 Jun 23:08
Compare
Choose a tag to compare

Similar to Moving MNIST, we further design the advanced version of MNIST with complex backgrounds from CIFAR-10, i.e., MMNIST-CIFAR benchmark, using $10\rightarrow 10$ frames prediction setting following PredRNN. Metrics (MSE, MAE, SSIM, pSNR) of the best models are reported in three trials. Parameters (M), FLOPs (G), and V100 inference FPS (s) are also reported for all methods. All methods are trained by Adam optimizer with Onecycle scheduler and single GPU.

STL Benchmarks on MMNIST-CIFAR

Method Setting Params FLOPs FPS MSE MAE SSIM PSNR Download
ConvLSTM-S 200 epoch 15.5M 58.8G 113 73.31 338.56 0.9204 23.09 model | log
ConvLSTM-L 200 epoch 34.4M 130.0G 50 62.86 291.05 0.9337 23.83 model | log
PredNet 200 epoch 12.5M 8.6G 945 286.70 514.14 0.8139 17.49 model | log
PhyDNet 200 epoch 3.1M 15.3G 182 142.54 700.37 0.8276 19.92 model | log
PredRNN 200 epoch 23.8M 116.0G 54 50.09 225.04 0.9499 24.90 model | log
PredRNN++ 200 epoch 38.6M 171.7G 38 44.19 198.27 0.9567 25.60 model | log
MIM 200 epoch 38.8M 183.0G 37 48.63 213.44 0.9521 25.08 model | log
MAU 200 epoch 4.5M 17.8G 201 58.84 255.76 0.9408 24.19 model | log
E3D-LSTM 200 epoch 52.8M 306.0G 18 80.79 214.86 0.9314 22.89 model | log
PredRNN.V2 200 epoch 23.9M 116.6G 52 57.27 252.29 0.9419 24.24 model | log
DMVFN 200 epoch 3.6M 0.2G 960 298.73 606.92 0.7765 17.07 model | log
SimVP+IncepU 200 epoch 58.0M 19.4G 209 59.83 214.54 0.9414 24.15 model | log
SimVP+gSTA-S 200 epoch 46.8M 16.5G 282 51.13 185.13 0.9512 24.93 model | log
TAU 200 epoch 44.7M 16.0G 275 48.17 177.35 0.9539 25.21 model | log

Benchmark of MetaFormers Based on SimVP (MetaVP)

MetaFormer Setting Params FLOPs FPS MSE MAE SSIM PSNR Download
IncepU (SimVPv1) 200 epoch 58.0M 19.4G 209 59.83 214.54 0.9414 24.15 model | log
gSTA (SimVPv2) 200 epoch 46.8M 16.5G 282 51.13 185.13 0.9512 24.93 model | log
ViT 200 epoch 46.1M 16.9G 290 64.94 234.01 0.9354 23.90 model | log
Swin Transformer 200 epoch 46.1M 16.4G 294 57.11 207.45 0.9443 24.34 model | log
Uniformer 200 epoch 44.8M 16.5G 296 56.96 207.51 0.9442 24.38 model | log
MLP-Mixer 200 epoch 38.2M 14.7G 334 57.03 206.46 0.9446 24.34 model | log
ConvMixer 200 epoch 3.9M 5.5G 658 59.29 219.76 0.9403 24.17 model | log
Poolformer 200 epoch 37.1M 14.1G 341 60.98 219.50 0.9399 24.16 model | log
ConvNeXt 200 epoch 37.3M 14.1G 344 51.39 187.17 0.9503 24.89 model | log
VAN 200 epoch 44.5M 16.0G 288 59.59 221.32 0.9398 25.20 model | log
HorNet 200 epoch 45.7M 16.3G 287 55.79 202.73 0.9456 24.49 model | log
MogaNe...
Read more

V0.3.0-MFMNIST-Weights

18 Jun 22:57
Compare
Choose a tag to compare

Similar to Moving MNIST, we also provide the advanced version of MNIST, i.e., MFMNIST benchmark results, using $10\rightarrow 10$ frames prediction setting following PredRNN. Metrics (MSE, MAE, SSIM, pSNR) of the best models are reported in three trials. Parameters (M), FLOPs (G), and V100 inference FPS (s) are also reported for all methods. All methods are trained by Adam optimizer with Onecycle scheduler and single GPU.

  • For a fair comparison of different methods, we provide config files in configs/mfmnist.
  • We also benchmark popular Metaformer architectures on SimVP with training times of 200 epochs. We provide config files in configs/mfmnist/simvp.

STL Benchmarks on MFMNIST

Method Setting Params FLOPs FPS MSE MAE SSIM PSNR Download
ConvLSTM-S 200 epoch 15.0M 56.8G 113 28.87 113.20 0.8793 22.07 model | log
ConvLSTM-L 200 epoch 33.8M 127.0G 50 25.51 104.85 0.8928 22.67 model | log
PredNet 200 epoch 12.5M 8.6G 659 185.94 318.30 0.6713 14.83 model | log
PhyDNet 200 epoch 3.1M 15.3G 182 34.75 125.66 0.8567 22.03 model | log
PredRNN 200 epoch 23.8M 116.0G 54 22.01 91.74 0.9091 23.42 model | log
PredRNN++ 200 epoch 38.6M 171.7G 38 21.71 91.97 0.9097 23.45 model | log
MIM 200 epoch 38.0M 179.2G 37 23.09 96.37 0.9043 23.13 model | log
MAU 200 epoch 4.5M 17.8G 201 26.56 104.39 0.8916 22.51 model | log
E3D-LSTM 200 epoch 51.0M 298.9G 18 35.35 110.09 0.8722 21.27 model | log
PredRNN.V2 200 epoch 23.9M 116.6G 52 24.13 97.46 0.9004 22.96 model | log
DMVFN 200 epoch 3.5M 0.2G 1145 118.32 220.02 0.7572 16.76 model | log
SimVP+IncepU 200 epoch 58.0M 19.4G 209 30.77 113.94 0.8740 21.81 model | log
SimVP+gSTA-S 200 epoch 46.8M 16.5G 282 25.86 101.22 0.8933 22.61 model | log
TAU 200 epoch 44.7M 16.0G 283 24.24 96.72 0.8995 22.87 model | log

Benchmark of MetaFormers Based on SimVP (MetaVP)

MetaFormer Setting Params FLOPs FPS MSE MAE SSIM PSNR Download
IncepU (SimVPv1) 200 epoch 58.0M 19.4G 209 30.77 113.94 0.8740 21.81 model | log
gSTA (SimVPv2) 200 epoch 46.8M 16.5G 282 25.86 101.22 0.8933 22.61 model | log
ViT 200 epoch 46.1M 16.9.G 290 31.05 115.59 0.8712 21.83 model | log
Swin Transformer 200 epoch 46.1M 16.4G 294 28.66 108.93 0.8815 22.08 model | log
Uniformer 200 epoch 44.8M 16.5G 296 29.56 111.72 0.8779 21.97 model | log
MLP-Mixer 200 epoch 38.2M 14.7G 334 28.83 109.51 0.8803 22.01 model | log
ConvMixer 200 epoch 3.9M 5.5G 658 31.21 115.74 0.8709 21.71 model | log
Poolformer 200 epoch 37.1M 14.1G 341 30.02 113.07 0.8750 21.95 model | log
ConvNeXt 200 epoch 37.3M 14.1G 344 26.41 102.56 0.8908 22.49 model | log
VAN 200 epoch 44.5M 16.0G 288 31.39 116.28 0.8703 22.82 model | log
HorNet 200 epoch 45.7M 16.3G 287 29.19 110.17 0.8796 22.03 model | log
MogaNet 200 epoch 46.8M 16.5G 255 25.14 99.69 0.8960 22.73 model | log
TAU 200 epoch 44.7M 16.0G 283 24.24 96.72 0.8995 22.87 [model](https://github.com/chengtan9907/OpenSTL/releases/download/m...
Read more

V0.3.0-KTH20-Weights

18 Jun 23:28
Compare
Choose a tag to compare

We provide long-term prediction benchmark results on KTH Action dataset using $10\rightarrow 20$ frames prediction setting. Metrics (MSE, MAE, SSIM, pSNR, LPIPS) of the best models are reported in three trials. Parameters (M), FLOPs (G), and V100 inference FPS (s) are also reported for all methods. The default training setup is trained 100 epochs by Adam optimizer with a batch size of 16 and Onecycle scheduler on single GPU or 4GPUs, and we report the used GPU setups for each method (also shown in the config).

  • For a fair comparison of different methods, we provide config files in configs/kth. Notice that 4xbs4 indicates 4GPUs DDP training with a batch size of 4 on each GPU.
  • We provide config files in configs/kth/simvp.

STL Benchmarks on KTH

Method GPUs Params FLOPs FPS MSE MAE SSIM PSNR LPIPS Download
ConvLSTM 1xbs16 14.9M 1368.0G 16 47.65 445.5 0.8977 26.99 0.26686 model | log
E3D-LSTM 2xbs8 53.5M 217.0G 17 136.40 892.7 0.8153 21.78 0.48358 model | log
PredNet 1xbs16 12.5M 3.4G 399 152.11 783.1 0.8094 22.45 0.32159 model | log
PhyDNet 1xbs16 3.1M 93.6G 58 91.12 765.6 0.8322 23.41 0.50155 model | log
MAU 1xbs16 20.1M 399.0G 8 51.02 471.2 0.8945 26.73 0.25442 model | log
MIM 1xbs16 39.8M 1099.0G 17 40.73 380.8 0.9025 27.78 0.18808 model | log
PredRNN 1xbs16 23.6M 2800.0G 7 41.07 380.6 0.9097 27.95 0.21892 model | log
PredRNN++ 1xbs16 38.3M 4162.0G 5 39.84 370.4 0.9124 28.13 0.19871 model | log
PredRNN.V2 1xbs16 23.6M 2815.0G 7 39.57 368.8 0.9099 28.01 0.21478 model | log
DMVFN 1xbs16 3.5M 0.88G 727 59.61 413.2 0.8976 26.65 0.12842 model | log
SimVP+IncepU 2xbs8 12.2M 62.8G 77 41.11 397.1 0.9065 27.46 0.26496 model | log
SimVP+gSTA 4xbs4 15.6M 76.8G 53 45.02 417.8 0.9049 27.04 0.25240 model | log
TAU 4xbs4 15.0M 73.8G 55 45.32 421.7 0.9086 27.10 0.22856 model | log

Benchmark of MetaFormers Based on SimVP (MetaVP)

MetaFormer GPUs Params FLOPs FPS MSE MAE SSIM PSNR LPIPS Download
IncepU (SimVPv1) 2xbs8 12.2M 62.8G 77 41.11 397.1 0.9065 27.46 0.26496 model | log
gSTA (SimVPv2) 2xbs8 15.6M 76.8G 53 45.02 417.8 0.9049 27.04 0.25240 model | log
ViT 2xbs8 12.7M 112.0G 28 56.57 459.3 0.8947 26.19 0.27494 model | log
Swin Transformer 2xbs8 15.3M 75.9G 65 45.72 405.7 0.9039 27.01 0.25178 model | log
Uniformer 2xbs8 11.8M 78.3G 43 44.71 404.6 0.9058 27.16 0.24174 model | log
MLP-Mixer 2xbs8 20.3M 66.6G 34 57.74 517.4 0.8886 25.72 0.28799 model | log
ConvMixer 2xbs8 1.5M 18.3G 175 47.31 446.1 0.8993 26.66 0.28149 model | log
Poolformer 2xbs8 12.4M 63.6G 67 45.44 400.9 0.9065 27.22 0.24763 model | log
ConvNeXt 2xbs8 12.5M 63.9G 72 45.48 428.3 0.9037 26.96 0.26253 model | log
VAN 2xbs8 14.9M 73.8G 55 45.05 409.1 0.9074 27.07 0.23116 model | log
HorNet 2xbs8 15.3M 75.3G 58 46.84 421.2 0.9005 26.80 0.26921 model | log
MogaNet 2xbs8 15.6M 76.7G 48 42.98 418.7 0.9065 27.16 0.25146 model | log
TAU 2xbs8 15.0M 73.8G 55 45.32 421.7 0.9086 27.10 0.22856 model | log

V0.3.0-KITTICaltech-Weights

18 Jun 23:18
Compare
Choose a tag to compare

We provide benchmark results on KittiCaltech Pedestrian dataset using $10\rightarrow 1$ frames prediction setting following PredNet. Metrics (MSE, MAE, SSIM, pSNR, LPIPS) of the best models are reported in three trials. Parameters (M), FLOPs (G), and V100 inference FPS (s) are also reported for all methods. The default training setup is trained 100 epochs by Adam optimizer with Onecycle scheduler on single GPU, while some computational consuming methods (denoted by *) using 4GPUs.

STL Benchmarks on KittiCaltech

Method Setting Params FLOPs FPS MSE MAE SSIM PSNR LPIPS Download
ConvLSTM-S 100 epoch 15.0M 595.0G 33 139.6 1583.3 0.9345 27.46 0.08575 model | log
E3D-LSTM* 100 epoch 54.9M 1004G 10 200.6 1946.2 0.9047 25.45 0.12602 model | log
PredNet 100 epoch 12.5M 42.8G 94 159.8 1568.9 0.9286 27.21 0.11289 model | log
PhyDNet 100 epoch 3.1M 40.4G 117 312.2 2754.8 0.8615 23.26 0.32194 model | log
MAU 100 epoch 24.3M 172.0G 16 177.8 1800.4 0.9176 26.14 0.09673 model | log
MIM 100 epoch 49.2M 1858G 39 125.1 1464.0 0.9409 28.10 0.06353 model | log
PredRNN 100 epoch 23.7M 1216G 17 130.4 1525.5 0.9374 27.81 0.07395 model | log
PredRNN++ 100 epoch 38.5M 1803G 12 125.5 1453.2 0.9433 28.02 0.13210 model | log
PredRNN.V2 100 epoch 23.8M 1223G 52 147.8 1610.5 0.9330 27.12 0.08920 model | log
DMVFN 100 epoch 3.6M 1.2G 557 183.9 1531.1 0.9314 26.95 0.04942 model | log
SimVP+IncepU 100 epoch 8.6M 60.6G 57 160.2 1690.8 0.9338 26.81 0.06755 model | log
SimVP+gSTA-S 100 epoch 15.6M 96.3G 40 129.7 1507.7 0.9454 27.89 0.05736 model | log
TAU 100 epoch 44.7M 80.0G 55 131.1 1507.8 0.9456 27.83 0.05494 model | log

Benchmark of MetaFormers Based on SimVP (MetaVP)

MetaFormer Setting Params FLOPs FPS MSE MAE SSIM PSNR LPIPS Download
IncepU (SimVPv1) 100 epoch 8.6M 60.6G 57 160.2 1690.8 0.9338 26.81 0.06755 model | log
gSTA (SimVPv2) 100 epoch 15.6M 96.3G 40 129.7 1507.7 0.9454 27.89 0.05736 model | log
ViT* 100 epoch 12.7M 155.0G 25 146.4 1615.8 0.9379 27.43 0.06659 model | log
Swin Transformer 100 epoch 15.3M 95.2G 49 155.2 1588.9 0.9299 27.25 0.08113 model | log
Uniformer* 100 epoch 11.8M 104.0G 28 135.9 1534.2 0.9393 27.66 0.06867 model | log
MLP-Mixer 100 epoch 22.2M 83.5G 60 207.9 1835.9 0.9133 26.29 0.07750 model | log
ConvMixer 100 epoch 1.5M 23.1G 129 174.7 1854.3 0.9232 26.23 0.07758 model | log
Poolformer 100 epoch 12.4M 79.8G 51 153.4 1613.5 0.9334 27.38 0.07000 model | log
ConvNeXt 100 epoch 12.5M 80.2G 54 146.8 1630.0 0.9336 27.19 0.06987 model | log
VAN 100 epoch 14.9M 92.5G 41 127.5 1476.5 0.9462 27.98 0.05500 model | log
HorNet 100 epoch 15.3M 94.4G 43 152.8 1637.9 0.9365 27.09 0.06004 model | log
MogaNet 100 epoch 15.6M 96.2G 36 131.4 1512.1 0.9442 27.79 0.05394 model | log
TAU 100 epoch 44.7M 80.0G 55 131.1 1507....
Read more