The proposed challenge is a tiny Pascal VOC instance segmentation. Contains two parts:
- Do segmentation mask for each instance
- classify the instances into 20 classes
The giving tiny Pascal VOC dataset contains 1349 images for training and 100 images for testing. This project uses the Pytorch library and backbone pre-trained on ImageNet model to fix this challenge.
- Intel(R) Core(TM) i5-9600K CPU @ 3.70GHz
- NVIDIA GeForce RTX 2080 Ti
- Microsoft win10
- Python 3.7.3
- Pytorch 1.7.0
- CUDA 10.2
To reproduct my submission without retrainig, do the following steps:
- install pytorch from https://pytorch.org/get-started/locally/
- install dependencies
pip install -r requirements.txt
Download the given dataset from Google Drive.
data /
+- train_images
+- test_images
+- pascal_train.json
+- test.json
python train.py
※ get more info by python train.py --help
usage: train.py [-h] [-r WORKING_DIR] [-e EPOCH] [-b BATCH_SIZE]
[-lr LEARNING_RATE]
optional arguments:
-h, --help show this help message and exit
-r WORKING_DIR, --root WORKING_DIR
path to dataset
-e EPOCH, --epochs EPOCH
num of epoch
-b BATCH_SIZE, --batch BATCH_SIZE
set batch size
-lr LEARNING_RATE, --learning_rate LEARNING_RATE
set learning rate
python test.py