Skip to content

Commit

Permalink
updated pubs
Browse files Browse the repository at this point in the history
  • Loading branch information
christianholland committed Dec 5, 2021
1 parent b8b7f22 commit 9b6a970
Show file tree
Hide file tree
Showing 3 changed files with 55 additions and 18 deletions.
14 changes: 13 additions & 1 deletion bib/references.bib
Original file line number Diff line number Diff line change
Expand Up @@ -3575,4 +3575,16 @@ @misc{hernansaizballesteros2021
archivePrefix={arXiv},
primaryClass={q-bio.GN}
}

@article{badiaimompel_2021,
title = {{decoupleR}: Ensemble of computational methods to infer biological activities from omics data},
author = {Badia-i-Mompel, Pau and Vélez, Jesús and Braunger, Jana and Geiss, Celina and Dimitrov, Daniel and Müller-Dott, Sophia and Taus, Petr and Dugourd, Aurelien and Holland, Christian Haydar and Ramírez Flores, Ricardo Omar and Saez-Rodriguez, Julio},
url = {http://biorxiv.org/lookup/doi/10.1101/2021.11.04.467271},
year = {2021},
month = {nov},
day = {4},
urldate = {2021-11-26},
journal = {BioRxiv},
doi = {10.1101/2021.11.04.467271},
sciwheel-projects = {Thesis},
abstract = {Summary: Many methods allow us to extract biological activities from omics data using information from prior knowledge resources, reducing the dimensionality for increased statistical power and better interpretability. Here, we present {decoupleR}, a Bioconductor package containing computational methods to extract these activities within a unified framework. {decoupleR} allows us to flexibly run any method with a given resource, including methods that leverage mode of regulation and weights of interactions. Using {decoupleR}, we evaluated the performance of methods on transcriptomic and phospho-proteomic perturbation experiments. Our findings suggest that simple linear models and the consensus score across methods perform better than other methods at predicting perturbed regulators. Availability and Implementation: {decoupleR} is open source available in Bioconductor (https://www.bioconductor.org/packages/release/bioc/html/{decoupleR}.html). The code to reproduce the results is in Github (https://github.com/saezlab/{decoupleR\_manuscript}) and the data in Zenodo (https://zenodo.org/record/5645208).}
}
13 changes: 13 additions & 0 deletions data/my_publications/my_publications.bib
Original file line number Diff line number Diff line change
Expand Up @@ -135,4 +135,17 @@ @article{hernansaizballesteros2021
year = {2021},
month = aug,
publisher = {},
},
@article{badiaimompel_2021,
title = {{decoupleR}: Ensemble of computational methods to infer biological activities from omics data},
author = {Pau Badia-i-Mompel and Jesús Vélez and Jana Braunger and Celina Geiss and Daniel Dimitrov and Sophia Müller-Dott and Petr Taus and Aurelien Dugourd and Christian H. Holland and Ricardo O. Ramirez Flores and Julio Saez-Rodriguez},
url = {http://biorxiv.org/lookup/doi/10.1101/2021.11.04.467271},
year = {2021},
month = {nov},
day = {4},
urldate = {2021-11-26},
journal = {BioRxiv},
doi = {10.1101/2021.11.04.467271},
sciwheel-projects = {Thesis},
abstract = {Summary: Many methods allow us to extract biological activities from omics data using information from prior knowledge resources, reducing the dimensionality for increased statistical power and better interpretability. Here, we present {decoupleR}, a Bioconductor package containing computational methods to extract these activities within a unified framework. {decoupleR} allows us to flexibly run any method with a given resource, including methods that leverage mode of regulation and weights of interactions. Using {decoupleR}, we evaluated the performance of methods on transcriptomic and phospho-proteomic perturbation experiments. Our findings suggest that simple linear models and the consensus score across methods perform better than other methods at predicting perturbed regulators. Availability and Implementation: {decoupleR} is open source available in Bioconductor (https://www.bioconductor.org/packages/release/bioc/html/{decoupleR}.html). The code to reproduce the results is in Github (https://github.com/saezlab/{decoupleR\_manuscript}) and the data in Zenodo (https://zenodo.org/record/5645208).}
}
46 changes: 29 additions & 17 deletions prelims/preface.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,9 @@ on single-cell RNA-seq data." _Genome Biology._ [-@holland_2020a]. DOI:
Marchan R, Cadenas C, Reinders J, Hoehme S, Seddek A, Dooley S, Keitel V,
Godoy P, Begher-Tibbe B, Trautwein C, Rupp C, Mueller S, Longerich T,
Hengstler JG^#^, Saez-Rodriguez J^#^, Ghallab A^#^. "Transcriptomic
cross-species analysis of chronic liver disease reveals consistent regulation between humans and mice." _Hepatology Communications_. [-@holland_2021]. DOI: [10.1002/hep4.1797](https://doi.org/10.1002/hep4.1797).
cross-species analysis of chronic liver disease reveals consistent regulation
between humans and mice." _Hepatology Communications_. [-@holland_2021]. DOI:
[10.1002/hep4.1797](https://doi.org/10.1002/hep4.1797).

**Other publications that I have contributed to but are not presented in this thesis**

Expand All @@ -39,13 +41,14 @@ _Nucleic Acids Research._ [-@szalai_2019]. DOI:
3. Ghallab A, Myllys M, **Holland CH**, Zaza A, Murad W, Hassan R, Ahmed YA,
Abbas T, Abdelrahim EA, Schneider KM, Matz-Soja M, Reinders J, Gebhardt R,
Berres ML, Hatting M, Drasdo D, Saez-Rodriguez J, Trautwein C, Hengstler JG.
"Influence of Liver Fibrosis on Lobular Zonation." _Cells._ [-@ghallab_2019a]. DOI:
[10.3390/cells8121556](https://doi.org/10.3390/cells8121556).

4. Tajti F^\*^, Kuppe C^\*^, Antoranz A, Ibrahim MM, Kim H, Ceccarelli F, **Holland CH**,
Olauson H, Floege J, Alexopoulos LG, Kramann R, Saez-Rodriguez J. "A functional
landscape of chronic kidney disease entities from public transcriptomic data."
_Kidney International Reports._ [-@tajti_2020]. DOI:
"Influence of Liver Fibrosis on Lobular Zonation." _Cells._ [-@ghallab_2019a].
DOI: [10.3390/cells8121556](https://doi.org/10.3390/cells8121556).

4. Tajti F^\*^, Kuppe C^\*^, Antoranz A, Ibrahim MM, Kim H, Ceccarelli F,
**Holland CH**, Olauson H, Floege J, Alexopoulos LG, Kramann R,
Saez-Rodriguez J. "A functional landscape of chronic kidney disease entities
from public transcriptomic data." _Kidney International Reports._
[-@tajti_2020]. DOI:
[10.1016/j.ekir.2019.11.005](https://doi.org/10.1016/j.ekir.2019.11.005).

5. Mohs A, Otto T, Schneider KM, Peltzer M, Boekschoten M, **Holland CH**,
Expand All @@ -66,20 +69,29 @@ Erythematosus." _Life_. [-@lopezdominguez_2021]. DOI:
[10.3390/life11040299](https://doi.org/10.3390/life11040299).

8. Robrahn L, Dupont A, Jumpertz S, Zhang K, **Holland CH**, Guillaume J,
Rappold S, Cerovic V, Saez-Rodriguez J, Hornef MW, Cramer T. "Conditional
deletion of HIF-1a provides new insight regarding the murine response to
gastrointestinal infection with Salmonella Typhimurium." _bioRxiv._
[-@robrahn_2021]. DOI:
Rappold S, Roth J, Cerovic V, Saez-Rodriguez J, Hornef MW, Cramer T.
"Stabilization but no functional influence of HIF-1a expression in the
intestinal epithelium during Salmonella Typhimurium infection."
_Infection and Immunity._ [-@robrahn_2021]. DOI:
[10.1101/2021.01.16.426940](https://doi.org/10.1101/2021.01.16.426940).

9. Schneider KM^\*^, Mohs A^\*^, Gui W, Galvez EJC, Candels LS, **Holland CH**,
9. Hernansaiz-Ballesteros R, **Holland CH**, Dugourd A, Saez-Rodriguez J.
"FUNKI: Interactive functional footprint-based analysis of omics data".
_arXiv_. [-@hernansaizballesteros2021]. ID:
[arXiv:2109.05796](https://arxiv.org/abs/2109.05796).

10. Badia-i-Mompel P, Vélez J, Braunger J, Geiss C, Dimitrov D, Müller-Dott S,
Taus P, Dugourd A, **Holland CH**, RO Ramirez Flores, Saez-Rodriguez J.
"decoupleR: Ensemble of computational methods to infer biological activities
from omics data". _bioRxiv._ [-@badiaimompel_2021]. DOI:
[10.1101/2021.11.04.467271](https://doi.org/10.1101/2021.11.04.467271).

11. Schneider KM^\*^, Mohs A^\*^, Gui W, Galvez EJC, Candels LS, **Holland CH**,
Elfers C, Kilic K, Schneider CV, Strnad P, Wirtz TH, Marschall HU, Latz E,
Lelouvier B, Saez-Rodriguez J, de Vos W, Strowig T, Trebicka J, Trautwein C.
"Imbalanced gut microbiota fuels HCC development by shaping the hepatic
inflammatory microenvironment." _Under review at Nature Communications_. 2021.

10. Hernansaiz-Ballesteros R, **Holland CH**, Dugourd A, Saez-Rodriguez J. "FUNKI: Interactive functional footprint-based analysis of omics data". _arXiv_. [-@hernansaizballesteros2021]. ID: [arXiv:2109.05796](https://arxiv.org/abs/2109.05796).

^\*^_Shared first authorship_
^#^_Shared senior authorship_

Expand All @@ -92,13 +104,13 @@ relevant_authors <- c(
"Ghallab", "Mohs", "Joughin", "Trautwein", "Turei", "Lauffenburger", "Mereu",
"Heyn", "Hengstler", "Gleixner", "Schneider", "Kumar", "Berres", "Stegle",
"Holland", "Robrahn", "Cramer", "Carmona-Saez", "Dooley", "Myllys",
"Hernansaiz-Ballesteros", "Dugourd"
"Hernansaiz-Ballesteros", "Dugourd", "Badia-i-Mompel"
)
author_type <- tibble(last_name = c(
"Garcia-Alonso", "Ibrahim", "Turei", "Saez-Rodriguez", "Tanevski", "Perales",
"Szalai", "Subramanian", "Tajti", "Kim", "Ceccarelli", "Ramirez", "Lanzer",
"Levinson", "Holland", "Hernansaiz-Ballesteros", "Dugourd"
"Levinson", "Holland", "Hernansaiz-Ballesteros", "Dugourd", "Badia-i-Mompel"
)) %>%
mutate(class = "internal")
Expand Down

0 comments on commit 9b6a970

Please sign in to comment.