Skip to content

PyTorch implementation of the time-domain induced polarization variational autoencoder

License

Notifications You must be signed in to change notification settings

clberube/ip-vae

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

45 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

License: MIT DOI

IP-VAE

PyTorch implementation of the time-domain induced polarization variational autoencoder.

Citation

Charles L. Bérubé and Pierre Bérubé, (2022), "Data-driven modeling of time-domain induced polarization," GEOPHYSICS 87(3): E135-E146. https://doi.org/10.1190/geo2021-0497.1

Original submitted manuscript (open access): https://arxiv.org/abs/2107.14796

Setup

Dependencies

Installation

git clone https://github.com/clberube/ip-vae
cd ip-vae
python setup.py install

Usage

Loading the model

import ipvae
import torch
import numpy as np
import matplotlib.pyplot as plt

model = ipvae.Net()
model = model.load_weights()

Generative properties

# Generate a synthetic decay
# by decoding a sample of 2D N(0,1)
x = model.decode(torch.randn(2))

# Add uniform random noise to it
xn = x + 5*(torch.rand(20) - 0.5)

Basic denoising

In this example we show how to denoise a decay curve. IP-VAE forward passes are stochastic. Doing a single pass will provide varying results.

# Denoise decay with a forward pass
output = model.forward(xn)  # returns (xp, mu, logvar)
xp = output[0]

# Plot comparison
t = np.arange(0.14, 0.92, 0.04)  # the IRIS ELREC Pro time windows
plt.plot(t, x.detach().numpy(), '--k', label="Ground truth")
plt.plot(t, xn.detach().numpy(), '.k', label="Noisy input")
plt.plot(t, xp.detach().numpy(), '-C3', label="Denoised")
plt.legend()
plt.ylabel("Chargeability (mV/V)")
plt.xlabel("$t$ (s)")
plt.show()

Uncertainty estimation

It is a better idea to run multiple realizations to estimate data uncertainty. Here we use 2*sigma as the uncertainty but users are free to compute any quantiles.

# Run 100 realizations and stack as a tensor
xp = [model.forward(xn)[0] for _ in range(100)]
xp = torch.stack(xp)
# Compute statistics
xp_avg = torch.mean(xp, dim=0)
xp_std = torch.std(xp, dim=0)

# Plot comparison
plt.figure()
plt.plot(t, x.detach().numpy(), '--k', label="Ground truth")
plt.plot(t, xn.detach().numpy(), '.k', label="Noisy input")
plt.plot(t, xp_avg.detach().numpy(), '-C3', label="Denoised")
plt.fill_between(t,
                 (xp_avg-2*xp_std).detach().numpy(),
                 (xp_avg+2*xp_std).detach().numpy(),
                 color='C3', alpha=0.2, label=r"$2\sigma$")
plt.legend()
plt.ylabel("Chargeability (mV/V)")
plt.xlabel("$t$ (s)")
plt.show()

Computation speed

The IP-VAE is quite fast. These are timing results from running a forward pass on a Apple M1 chip.

%timeit model.forward(xn)
135 µs ± 619 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

Meaning it can process around 7500 decays per second on a personal laptop computer.

Tune latent dimensions

It is possible to use the default model (zdim=2) or the other models described in the paper (zdim=1, zdim=4, zdim=6). The differences are not that noticeable, but zdim=1 can generate smoother curves than zdim=6.

model = ipvae.Net(zdim=1)
model = model.load_weights()